• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 220
  • 25
  • 20
  • 13
  • 12
  • 10
  • 5
  • 4
  • 4
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 424
  • 116
  • 96
  • 87
  • 80
  • 75
  • 74
  • 74
  • 54
  • 45
  • 44
  • 43
  • 43
  • 40
  • 38
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
161

Adaptive harvest-then-transmit for a two-tier heterogeneous wireless network

Ogundipe, Adedayo 12 August 2016 (has links)
Different techniques are being implemented in modern communication networks to ensure that their coverage, capacity, and other user-experience requirements are always met. In this thesis, I consider multi-antenna techniques, energy harvesting, and the dense deployment of small cell base stations in a two-tiered wireless powered communication network (WPCN) where multi-antenna transmitters utilize a Harvest Then Transmit (HTT) protocol to coordinate wireless energy harvesting and information transmission with their associated users. To satisfy network throughput requirements at all user positions, I formulate multi-constraint optimization problems to maximize the minimum data rate at both tier and network levels, solving the resulting non-convex expressions with an algorithm which incorporates the Perron-Frobenius non-negative matrix theory for alternate parameter optimization. I also present a less complex solution methodology, compared the performance of both and provided interesting insights on my findings. / October 2016
162

Computer simulation studies of multiple broadband target localization via frequency domain beamforming for planar arrays

Behrle, Charles D. 03 1900 (has links)
Approved for public release; distribution is unlimited / Computer simulation studies of a frequency domain adaptive beamforming algorithm are presented. These simulation studies were conducted to determine the multiple broadband target localization capability and the full angular coverage capability of the algorithm. The algorithm was evaluated at several signal-to-noise ratios with varying sampling rates. The number of iterations that the adaptive algorithm took to reach a minimum estimation error was determined. Results of the simulation studies indicate that the algorithm can localize multiple broadband targets and has full angular coverage capability. / http://archive.org/details/computersimulati00behr / Lieutenant, United States Navy
163

Channel Estimation Error, Oscillator Stability And Wireless Power Transfer In Wireless Communication With Distributed Reception Networks

Razavi, Sabah 11 January 2019 (has links)
This dissertation considers three related problems in distributed transmission and reception networks. Generally speaking, these types of networks have a transmit cluster with one or more transmit nodes and a receive cluster with one or more receive nodes. Nodes within a given cluster can communicate with each other using a wired or wireless local area network (LAN/WLAN). The overarching goal in this setting is typically to increase the efficiency of communication between the transmit and receive clusters through techniques such as distributed transmit beamforming, distributed reception, or other distributed versions of multi-input multi-output (MIMO) communication. More recently, the problem of wireless power transfer has also been considered in this setting. The first problem considered by this dissertation relates to distributed reception in a setting with a single transmit node and multiple receive nodes. Since exchanging lightly quantized versions of in-phase and quadrature samples results in high throughput requirements on the receive LAN/WLAN, previous work has considered an approach where nodes exchange hard decisions, along with channel magnitudes, to facilitate combining similar to an ideal receive beamformer. It has been shown that this approach leads to a small loss in SNR performance, with large reductions in required LAN/WLAN throughput. A shortcoming of this work, however, is that all of the prior work has assumed that each receive node has a perfect estimation of its channel to the transmitter. To address this shortcoming, the first part of this dissertation investigates the effect of channel estimation error on the SNR performance of distributed reception. Analytical expressions for these effects are obtained for two different modulation schemes, M-PSK and M2-QAM. The analysis shows the somewhat surprising result that channel estimation error causes the same amount of performance degradation in ideal beamforming and pseudo-beamforming systems despite the fact that the channel estimation errors manifests themselves quite differently in both systems. The second problem considered in this dissertation is related to oscillator stability and phase noise modeling. In distributed transmission systems with multiple transmitters in the transmit cluster, synchronization requirements are typically very strict, e.g., on the order of one picosecond, to maintain radio frequency phase alignment across transmitters. Therefore, being able to accurately model the behavior of the oscillators and their phase noise responses is of high importance. Previous approaches have typically relied on a two-state model, but this model is often not sufficiently rich to model low-cost oscillators. This dissertation develops a new three-state oscillator model and a method for estimating the parameters of this model from experimental data. Experimental results show that the proposed model provides up to 3 dB improvement in mean squared error (MSE) performance with respect to a two-state model. The last part of this work is dedicated to the problem of wireless power transfer in a setting with multiple nodes in the transmit cluster and multiple nodes in the receive cluster. The problem is to align the phases of the transmitters to achieve a certain power distribution across the nodes in the receive cluster. To find optimum transmit phases, we consider a iterative approach, similar to the prior work on one-bit feedback for distributed beamforming, in which each receive node sends a one-bit feedback to the transmit cluster indicating if the received power in that time slot for that node is increased. The transmitters then update their phases based on the feedback. What makes this problem particularly interesting is that, unlike the prior work on one-bit feedback for distributed beamforming, this is a multi-objective optimization problem where not every receive node can receive maximum power from the transmit array. Three different phase update decision rules, each based on the one-bit feedback signals, are analyzed. The effect of array sparsity is also investigated in this setting.
164

An Optimized Software-Defined-Radio Implementation of Time-Slotted Carrier Synchronization for Distributed Beamforming

Ni, Min 02 September 2010 (has links)
"This thesis describes the development of an optimized software-defined-radio implementation of a distributed beamforming system and presents experimental results for two-source and three- source wired-channel and acoustic-channel distributed beamforming using the time-slotted round-trip carrier synchronization protocol. The frequency and phase synthesizer used in this system is based on an optimized ``hybrid' phase locked loop (PLL) with averaging window which is shown to have high frequency estimation accuracy and consistency. For the wired-channel experiments, each source node was implemented by a TMS320C6713DSK while for the acoustic experiments, each source node in the system was built using commercial off-the-shelf parts including TMS320C6713DSK, microphone, speaker, audio amplifier, and battery. The source node functionality including phase locked loops and the logic associated with the time-slotted round-trip carrier synchronization protocol was realized through real-time software independently running on each source node's C6713 digital signal processor. Experimental results for two-source and three-source realizations of the wired-channel and acoustic-channel distributed beamforming system are presented. The results show that near-ideal beamforming performance can be consistently achieved at acoustic wavelengths equivalent to common radio frequency wavelengths."
165

Real-Time Software-Defined-Radio Implementation of a Two Source Distributed Beamformer

McGinley, James W 08 January 2007 (has links)
This thesis describes a real-time software-defined-radio implementation of a two source distributed beamformer. The technique in this thesis can be used to synchronize the carriers of two single antenna wireless transmitters (i.e. ``sources") with independent local clocks so that their bandpass transmissions arrive in-phase at an intended receiver (i.e. ``destination"). Synchronization is achieved via: (i) an unmodulated beacon transmitted by the destination to the sources and (ii) a pair of secondary unmodulated beacons between the sources. No explicit channel state information is exchanged between the sources and/or the destination. Using this method, it is possible to realize a two-source distributed beamformer that provides a reduction in overall transmit energy and increased security due to the directionality of the transmitted signal. System characterization results are provided along with experimental results for both time-invariant and time-varying channels. The experimental results in this thesis confirm the theoretical predictions and also provide explicit guidelines for a real-time implementation of a two-source distributed beamforming system.
166

Real-Time Software-Defined-Radio Implementation of Time-Slotted Carrier Synchronization for Distributed Beamforming

Zhang, Boyang 05 May 2009 (has links)
This thesis describes a real-time software-defined-radio implementation of the time-slotted round-trip carrier synchronization protocol in two-source and three-source communication systems. The techniques developed in this thesis can be used to synchronize the carriers of two or three single-antenna wireless transmitters with independent local oscillators so that their band-pass transmissions combine constructively at an intended receiver. Synchronization is achieved via the time-slotted transmission of (i) an unmodulated primary beacon from the destination to the sources and (ii) a series of secondary unmodulated beacons between the sources. Explicit channel state information is not exchanged between the sources and/or the destination. When synchronized, the single-antenna sources are able to cooperatively transmit as a distributed beamformer and achieve increased transmission range, reduced transmission energy, and/or increased security. The experimental results in this thesis confirm the theoretical predictions and also provide explicit guidelines for the real-time implementation of a carrier synchronization technique suitable for distributed transmit beamforming.
167

Spatial, Spectral, and Perceptual Nonlinear Noise Reduction for Hands-free Microphones in a Car

Faneuff, Jeffery J 06 August 2002 (has links)
"Speech enhancement in an automobile is a challenging problem because interference can come from engine noise, fans, music, wind, road noise, reverberation, echo, and passengers engaging in other conversations. Hands-free microphones make the situation worse because the strength of the desired speech signal reduces with increased distance between the microphone and talker. Automobile safety is improved when the driver can use a hands-free interface to phones and other devices instead of taking his eyes off the road. The demand for high quality hands-free communication in the automobile requires the introduction of more powerful algorithms. This thesis shows that a unique combination of five algorithms can achieve superior speech enhancement for a hands-free system when compared to beamforming or spectral subtraction alone. Several different designs were analyzed and tested before converging on the configuration that achieved the best results. Beamforming, voice activity detection, spectral subtraction, perceptual nonlinear weighting, and talker isolation via pitch tracking all work together in a complementary iterative manner to create a speech enhancement system capable of significantly enhancing real world speech signals. The following conclusions are supported by the simulation results using data recorded in a car and are in strong agreement with theory. Adaptive beamforming, like the Generalized Side-lobe Canceller (GSC), can be effectively used if the filters only adapt during silent data frames because too much of the desired speech is cancelled otherwise. Spectral subtraction removes stationary noise while perceptual weighting prevents the introduction of offensive audible noise artifacts. Talker isolation via pitch tracking can perform better when used after beamforming and spectral subtraction because of the higher accuracy obtained after initial noise removal. Iterating the algorithm once increases the accuracy of the Voice Activity Detection (VAD), which improves the overall performance of the algorithm. Placing the microphone(s) on the ceiling above the head and slightly forward of the desired talker appears to be the best location in an automobile based on the experiments performed in this thesis. Objective speech quality measures show that the algorithm removes a majority of the stationary noise in a hands-free environment of an automobile with relatively minimal speech distortion."
168

Time-domain Compressive Beamforming for Medical Ultrasound Imaging

David, Guillaume January 2016 (has links)
Over the past 10 years, Compressive Sensing has gained a lot of visibility from the medical imaging research community. The most compelling feature for the use of Compressive Sensing is its ability to perform perfect reconstructions of under-sampled signals using l1-minimization. Of course, that counter-intuitive feature has a cost. The lacking information is compensated for by a priori knowledge of the signal under certain mathematical conditions. This technology is currently used in some commercial MRI scanners to increase the acquisition rate hence decreasing discomfort for the patient while increasing patient turnover. For echography, the applications could go from fast 3D echocardiography to simplified, cheaper echography systems. Real-time ultrasound imaging scanners have been available for nearly 50 years. During these 50 years of existence, much has changed in their architecture, electronics, and technologies. However one component remains present: the beamformer. From analog beamformers to software beamformers, the technology has evolved and brought much diversity to the world of beam formation. Currently, most commercial scanners use several focalized ultrasonic pulses to probe tissue. The time between two consecutive focalized pulses is not compressible, limiting the frame rate. Indeed, one must wait for a pulse to propagate back and forth from the probe to the deepest point imaged before firing a new pulse. In this work, we propose to outline the development of a novel software beamforming technique that uses Compressive Sensing. Time-domain Compressive Beamforming (t-CBF) uses computational models and regularization to reconstruct de-cluttered ultrasound images. One of the main features of t-CBF is its use of only one transmit wave to insonify the tissue. Single-wave imaging brings high frame rates to the modality, for example allowing a physician to see precisely the movements of the heart walls or valves during a heart cycle. t-CBF takes into account the geometry of the probe as well as its physical parameters to improve resolution and attenuate artifacts commonly seen in single-wave imaging such as side lobes. In this thesis, we define a mathematical framework for the beamforming of ultrasonic data compatible with Compressive Sensing. Then, we investigate its capabilities on simple simulations in terms of resolution and super-resolution. Finally, we adapt t-CBF to real-life ultrasonic data. In particular, we reconstruct 2D cardiac images at a frame rate 100-fold higher than typical values.
169

Optimization techniques for reliable data communication in multi-antenna wireless systems

Elsabae, Ramadan G. M. January 2018 (has links)
This thesis looks at new methods of achieving reliable data communication in wireless communication systems using different antenna transmission optimization methods. In particular, the problems of exploitation of MIMO communication channel diversity, secure downlink beamforming techniques, adaptive beamforming techniques, resource allocation methods, simultaneous power and information transfer and energy harvesting within the context of multi-antenna wireless systems are addressed.
170

Real-Time Beamforming Algorithms for the Focal L-Band Array on the Green Bank Telescope

Ruzindana, Mark William 01 December 2017 (has links)
A phased array feed (PAF) provides a contiguous, electronically synthesized wide field of view for large-dish astronomical observatories. Significant progress has been made in recent years in improving the sensitivity of PAF receivers though optimizing the design of the antenna array, cryogenic cooling of the front end, and implementation of real-time correlation and beamforming in digital signal processing. FLAG is a 19 dual-polarized element phased array with cryogenic LNAs, direct digitization of RF signals at the front end, digital signal transport over fiber, and a real time signal processing back end with up to 150 MHz bandwidth. The digital back end includes multiple processing modes, including real-time beamforming, real-time correlation, and a separate real-time beamformer for commensal radio transient searches. Following a polyphase filterbank operation performed in field programmable gate arrays (FPGAs), beamforming, correlation, and integration are implemented on graphical processing units (GPUs) that perform parallelized operations. Parallelization greatly increases processing speed and allows for real-time signal processing. During a recent test/commissioning of FLAG, Tsys/efficiency of approximately 28 K was measured across the PAF field of view and operating bandwidth, corresponding to a system temperature below 20 K. To demonstrate the astronomical capability of the receiver, a pulsar (PSR B1937+21) was detected with the real-time beamformer. This thesis provides details on the development of the FLAG digital back end, the real-time beamformer, and reports on the commissioning tests of the FLAG PAF receiver developed by the National Radio Astronomy Observatory (NRAO), Green Bank Observatory (GBO), West Virginia University (WVU), and Brigham Young University for the Green Bank Telescope (GBT).

Page generated in 0.0536 seconds