• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 4
  • 4
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Characterisation of the 67 kilodalton laminin receptor (67 LR) in breast cancer

Donaldson, E. A. January 2001 (has links)
No description available.
2

The Mechanism Of Anti Tumorigenic Effects Of 15-lox-1 In Colon Cancer

Cimen, Ismail 01 December 2012 (has links) (PDF)
Colorectal cancer is the 4th most widespread cause of cancer mortality. One of the pathways that are involved in the development of colorectal cancer is the arachidonic acid metabolizing lipoxygenase (LOX) pathway. Inflammatory molecules formed from this pathway exert profound effects that may exacerbate the development and progression of colon and other cancers. 15 lipoxygenase-1 (15-LOX-1) is a member of LOX protein family that metabolizes primarily linoleic acid to 13-(S)-HODE. Several lines of evidence support an antiangiogenic role for 15-LOX-1, especially through 13-(S)-HODE. The expression of 15-LOX-1 is lost in colon cancer cells. Our aim in this thesis was to study whether 15-LOX-1 expression has an anticarcinogenic role, particularly on the metastatic and angiogenic potential of colon cancer cells. For this purpose, 15-LOX-1 was introduced into HCT-116 colon cancer cell lines. Having confirmed 15-LOX-1 expression and activity it was observed that expression of 15-LOX-1 significantly decreased cell proliferation, cell motility, anchorage-independent growth, migration and invasion across Matrigel, the expression of the metastasis-related MTA-1 protein, neoangiogenesis and induced apoptosis. Mechanistically, most of these effects were arbitrated by the 15-LOX-1 mediated inhibition of the inflammatory transcription factor NF-&kappa / B via the orphan nuclear receptor PPAR&gamma / . In conclusion, we propose that 15-LOX-1 has anti-tumorigenic properties and can be exploited for therapeutic benefits.
3

The Mechanism Of Anti Tumorigenic Effects Of 15-lox-1 In Colon Cancer

Cimen, Ismail 01 December 2012 (has links) (PDF)
Colorectal cancer is the 4th most widespread cause of cancer mortality. One of the pathways that are involved in the development of colorectal cancer is the arachidonic acid metabolizing lipoxygenase (LOX) pathway. Inflammatory molecules formed from this pathway exert profound effects that may exacerbate the development and progression of colon and other cancers. 15 lipoxygenase-1 (15-LOX-1) is a member of LOX protein family that metabolizes primarily linoleic acid to 13-(S)-HODE. Several lines of evidence support an antiangiogenic role for 15-LOX-1, especially through 13-(S)-HODE. The expression of 15-LOX-1 is lost in colon cancer cells. Our aim in this thesis was to study whether 15-LOX-1 expression has an anticarcinogenic role, particularly on the metastatic and angiogenic potential of colon cancer cells. For this purpose, 15-LOX-1 was introduced into HCT-116 colon cancer cell lines. Having confirmed 15-LOX-1 expression and activity it was observed that expression of 15-LOX-1 significantly decreased cell proliferation, cell motility, anchorage-independent growth, migration and invasion across Matrigel, the expression of the metastasis-related MTA-1 protein, neoangiogenesis and induced apoptosis. Mechanistically, most of these effects were arbitrated by the 15-LOX-1 mediated inhibition of the inflammatory transcription factor NF-&kappa / B via the orphan nuclear receptor PPAR&gamma / . In conclusion, we propose that 15-LOX-1 has anti-tumorigenic properties and can be exploited for therapeutic benefits.
4

To Detach, Migrate, Adhere, and Metastasize: CD97/ADGRE5 in Cancer

Aust, Gabriela, Zheng, Leyu, Quaas, Marianne 10 October 2023 (has links)
Tumorigenesis is a multistep process, during which cells acquire a series of mutations that lead to unrestrained cell growth and proliferation, inhibition of cell differentiation, and evasion of cell death. Growing tumors stimulate angiogenesis, providing them with nutrients and oxygen. Ultimately, tumor cells invade the surrounding tissue and metastasize; a process responsible for about 90% of cancer-related deaths. Adhesion G protein-coupled receptors (aGPCRs) modulate the cellular processes closely related to tumor cell biology, such as adhesion and detachment, migration, polarity, and guidance. Soon after first being described, individual human aGPCRs were found to be involved in tumorigenesis. Twenty-five years ago, CD97/ADGRE5 was discovered to be induced in one of the most severe tumors, dedifferentiated anaplastic thyroid carcinoma. After decades of research, the time has come to review our knowledge of the presence and function of CD97 in cancer. In summary, CD97 is obviously induced or altered in many tumor entities; this has been shown consistently in nearly one hundred published studies. However, its high expression at circulating and tumor-infiltrating immune cells renders the systemic targeting of CD97 in tumors difficult.

Page generated in 0.0905 seconds