• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 353
  • 243
  • 92
  • 34
  • 24
  • 15
  • 14
  • 5
  • 5
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • Tagged with
  • 872
  • 204
  • 191
  • 173
  • 149
  • 129
  • 125
  • 119
  • 114
  • 82
  • 76
  • 72
  • 69
  • 64
  • 58
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
101

Flame spray synthesis of catalyst nanoparticles for photocatalytic mineralisation of organics and Fischer-Tropsch synthesis

Teoh, Wey Yang, Chemical Sciences & Engineering, Faculty of Engineering, UNSW January 2007 (has links)
In this thesis, a range of TiO2-based photocatalysts and cobalt-based Fischer-Tropsch (FT) catalysts were developed and synthesised via the one-step Flame Spray Pyrolysis(FSP). The work starts with the demonstration of bare TiO2 nanoparticles synthesis with controlled characteristics such as specific surface areas, crystallite sizes and anatase content. A comparative study was carried out by benchmarking with commercial Degussa P25 TiO2. The FSP TiO2 was shown to be more efficient in mineralising pollutants requiring direct charge transfer such as the saccharides, while P25 was better for mineralising alcoholic and aromatic compounds. Both catalysts were equally as active in mineralising carboxylic acids. Upon identifying the optimal synthesis of bare TiO2, an in situ co-precipitation of highly dispersed Pt on TiO2 was carried out in the flame. Deposition of Pt resulted in enhanced photocatalytic performance as a result of efficient charge trappings. It is highlighted here the inter-relationship between Pt oxidation states and the TiO2photocatalysis of carboxylic acid, alcohol and aromatic compounds. Depending on the mineralisation path adopted by the model organic compounds, they were shown to have direct influence on the Pt oxidation states. These oxidation states in turn affect the mineralisation rates of the organic compounds. Substitutional-doping of TiO2 with Fe(III) with tunable bandgap was also possible by FSP synthesis. The high temperature synthesis coupled with rapid quenching resulted in 5 times higher solubility limit (Fe/Ti = 0.05) than that previously reported in the literature. Under visible light irradiation, FSP-made Fe-TiO2 improved the photocatalytic mineralisation of oxalic acid by more than 6 times, with respect to P25 and FSP TiO2. Furthermore, the photocatalyst was reusable over a number of repetitions with minimal leaching or loss in activity. The last part of the work concerns the development of bare and Ru-doped Co-ZrO2 catalysts, where cobalt was finely dispersed within the zirconia matrix. Doping of Ru enhanced significantly the reducibility of cobalt, reducing even the embedded cobalt beneath the zirconia surface. It also increased the extent of CO-chemisorption and as such, enhanced the FT activity. This is the first time, catalysts of such type is synthesised and tested for FT reaction.
102

Monitoring Photocatalytic Degradation of X-ray Contrast Media with Raman Spectroscopy

Salkic, Sabina 29 May 2012 (has links)
X-ray contrast media such as diatrizoate and iohexol have been found in wastewater and drinking water and are difficult to remove because they are resistant to water treatment processes. A removal process can be started with ultraviolet photocatalytic degradation of X-ray contrast media in the presence of titanium dioxide or other catalysts. Raman spectra of diatrizoate and iohexol were taken in an aqueous solution in the presence and absence of titanium dioxide during exposure to ultraviolet radiation. Raman intensity is directly proportional to concentration; therefore, we can measure the rate of the reaction based on changes in the Raman spectrum. Changes were monitored for eight hours. Evidence of photoreaction is observed, indicating that the degradation of X-ray contrast media can be measured using Raman spectra. To our knowledge, this represents the first use of Raman spectroscopy to monitor photocatalytic degradation in real time, opening a potentially powerful approach to studying the removal of pollutants in the environment.
103

Influence of Temperature and Humidity on the Photocatalytical Decomposition of Benzene

Hung, Jen-Lin 14 September 2001 (has links)
ABSTRACT This study investigated the influence of temperature and humidity on the decomposition efficiency of benzene vapor in a packed-bed UV/TiO2 photocatalytical reactor. The packed-bed annular photocatalytical reactor illuminated by a 15-watt ultraviolet lamp was originally designed for this particular study. Pyrex glass beads coated with Degussa P-25 TiO2 (80 % anatase) were packed in the photocatalytical reactor. The operating parameters investigated in this study included reaction temperature (100-260¢J), water vapor concentration (0-1.58¡Ñ104 mg/m3), retention time (3.1-10.3 sec), and inlet benzene concentration (239-478 mg/m3). Experimental results indicated that the decomposition efficiency of benzene increased with reaction temperature whish was lower than 180¢J, for oxygen content of 21 %, water vapor concentration of 4.69¡Ñ103- 1.58¡Ñ104 mg/m3, and reaction temperature lower then 180¢J. However, the decomposition efficiency of benzene could not be further increased for reaction temperature higher than 180¢J. In addition, the decomposition efficiency of benzene increased with water vapor concentration which was lower than 1.16¡Ñ104 mg/m3. For water vapor concentration higher than 1.16¡Ñ104 mg/m3, the decomposition of benzene could not be further enhanced significantly. In this study, up to 100% of benzene decomposition could be achieved at water vapor concentration of 1.58¡Ñ104 mg/m3 and reaction temperature of 180¢J. Moreover, the decomposition efficiency of benzene increased from 57 to 100% as retention time increased from 3.1 to 10.3 seconds, while decreased from 100 to 65% as benzene concentration increased from 239 to 478 mg/m3. Modified Langmiur-Hinshewood kinetic model was applied to simulate the photocatalytic decomposition of benzene in the annular packed-bed photocatalytic reactor. The simulation of experimental results was successfully developed to describe the reaction rate of benzene for various reaction temperatures (160-260¢J) during the UV/TiO2 photocatalytical reaction process. Furthermore, reaction rate constant (KLH) and adsorption equilibrium constant (Kc and Kw) were functions of reaction temperature, where can the described by the Arrihenius Law. The rate controlling steps were either photocatalytic reaction on the surface adsorption of reaction products from the surface photocatalysts.
104

Effects of photocatalysis on concrete surfaces

Terpeluk, Alexandra Lee 18 June 2012 (has links)
Highway air pollution is a significant environmental threat that has staggering implications for human health worldwide. Photocatalytic materials have the potential to reduce air pollution levels near major highways using ultraviolet radiation. This project, funded by the Texas Department of Transportation, evaluated photocatalytic efficiency and durability of several commercially-available photocatalytic coatings for use on concrete structures near highways. The research presented in this thesis involved obtaining concrete highway barriers and creating concrete slabs for outdoor testing and laboratory chamber testing. Three commercially-available coatings were applied to the specimens for testing: Keim Soldalit ME paint, TxActive Stucco Cement, and Pureti Clean. Field sites were set up near major highways in Houston and Austin, Texas. Durability and photocatalytic efficiency were regularly monitored at the field sites using ion chromatography and spectrophotometry. X-ray diffraction (XRD) and scanning electron microscopy (SEM) were conducted on samples from each of the specimens taken before and after placement at the field sites in order to understand durability of the photocatalytic materials that were exposed outdoors. SEM results from this research project revealed that the photocatalytic material in the TxActive stucco and Keim paint remained in their original distribution after the exposure period, while the photocatalytic material in the Pureti Clean product appeared to decrease. XRD results remained fundamentally consistent for all coatings. Ion chromatography results showed that TxActive specimens had the highest surface levels of nitrates and nitrites between rainfall events, which indicates photocatalytic activity. Spectrophotometry results revealed a decrease in brightness for the Keim paint-coated specimens and no change or an increase in brightness for the TxActive stucco over time. The spectrophotometry results indicate how many surface contaminants are accumulating on the surface of a specimen, and thereby how efficiently sunlight is reaching the surface and activating the photocatalytic process. Results obtained from this research project may be influential in the selection of a means for reducing highway pollution in Texas. / text
105

The use of selective materials to reduce human exposure to ozone and oxides of nitrogen

Cros, Clément 05 November 2013 (has links)
Ozone (O₃) and oxides of nitrogen (NO[subscript x]) are ubiquitous pollutants in many urban areas around the world. Though they mostly originate outdoors, human inhalation exposure to these pollutants largely occurs indoors, because of the large fraction of our time spent inside buildings. Exposure to O₃ and nitrogen dioxide (NO₂) has been associated with decreased respiratory function, onset of asthma, and cardiovascular events. Through laboratory testing, field exposure and modeling, this study evaluates the feasibility and long-term efficiency of using passive removal materials (PRMs) both indoors and outdoors for removal of O₃ and NO[subscript x]. Three photocatalytic coatings used outdoors and four indoor building materials were tested for their capacity to remove NO[subscript x] and O₃. Since materials outdoors experience a wider range of environmental conditions than indoors, their effects on NO[subscript x] removal by photocatalytic coatings were evaluated through full factorial experiments representative of summertime outdoor conditions in Southeast Texas. Photocatalytic coatings were also exposed to real outdoor environments for a year to assess their long-term viability. Indoor materials were exposed to real indoor environments for a six-month period and tested monthly for their capacity to remove O₃. Carbonyl emissions from these materials before and after exposure to O₃ were also tested at regular intervals during the six-month period. Finally, removal capacity of NO and NO₂ by new indoor building materials was tested as well. For outdoor PRMs, results suggest that the effect of certain environmental parameters (contact time, relative humidity, temperature) on NO[subscript x] removal effectiveness are consistent across different photocatalytic coatings, while other effects are coating specific. The type of semiconductor used and resistance to wear of the coating are important factors in its ability to retain removal efficacy over time. For indoor PRMs, two of the four materials tested, an activated carbon mat and perlite-based ceiling tiles, exhibited consistent O₃ removal effectiveness over time with low carbonyl emissions, both before and after ozonation. All materials except for activated carbon mat had higher post-ozonation than pre-ozonation emissions. Post-ozonation emissions were dominated by nonanal. Simulation of the use of indoor and outdoor PRMs on a model building through multi-zone/CFD modeling showed that indoor PRMs alone could lead to concentration reductions up to 18 % for O₃ and 23 % for NO₂ in rooms of the model building selected. Addition of PRMs on the outside of the building led to small reductions in pollutant concentrations in the air infiltrating into the building, leading to negligible changes in indoor concentrations. / text
106

Photocatalytic oxidation of NiEDTA

Salama, Philippe. January 2007 (has links)
Metal-Ethylenediaminetetraacetic acid (EDTA) complexes are found in a variety of industrial process. The stability of the formed complexes makes these compounds often inert to conventional wastewater treatment systems. In this work, the photocatalytic oxidation of NiEDTA was investigated as a means of breaking up the chelated nickel. The studied variables included the light intensity rate, the catalyst (TiO2), oxygen and NiEDTA concentrations. Photocatalytic experiments showed that increasing the catalyst concentration (0.5-3.0 g/L) decreases the light penetration inside the reactor resulting in a decrease in the reaction rate. The effect of oxygen and NiEDTA concentration was shown to exhibit Langmuir-Hinshelwood type kinetics. Total organic carbon (TOC) did not show any significant mineralization of NiEDTA for all investigated conditions. As a result, the by-products of the reaction were measured and found to include ED3A (ethylenediaminetriacetic acid), N-N'-EDDA (ethylenediamindiaacetic acid), IDA (iminodiacetic acid), oxalic acid, oxamic acid, glyoxylic acid, formaldehyde, ammonia, nitrate and nitrite. ED3A was found to be the major by-product of the reaction and nitrogen added from NiEDTA was found to be released as ammonia nitrogen. Oxygen consumption experiments were demonstrated as an effective way to monitor the rate of the reaction through measurement of the electron oxygen utilization rate. Nickel precipitation experiments showed that some of the by-products of NiEDTA degradation formed complexes with nickel. Finally, a light distribution model was generated using a CFD software (Fluent 6.1.22). For the catalyst concentration range of 0.5 to 3.0 g/L, this model showed that all of the light energy supplied by a centered UV lamp is absorbed within a one centimeter distance. Using the local volumetric rate of energy absorption (LVREA) calculated from the model the rate of the reaction was expressed in terms of quantum yield. For experiments carried out with air the quantum yield showed that the degradation rate was limited from an insufficient oxygen supply for electron scavenging. Increasing the oxygen concentration to 0.60 mmole O2/L increased the quantum yield for the highest light intensity rate; however the quantum yield never reached an optimum value thus indicating that other limiting conditions exist.
107

Flame spray synthesis of catalyst nanoparticles for photocatalytic mineralisation of organics and Fischer-Tropsch synthesis

Teoh, Wey Yang, Chemical Sciences & Engineering, Faculty of Engineering, UNSW January 2007 (has links)
In this thesis, a range of TiO2-based photocatalysts and cobalt-based Fischer-Tropsch (FT) catalysts were developed and synthesised via the one-step Flame Spray Pyrolysis(FSP). The work starts with the demonstration of bare TiO2 nanoparticles synthesis with controlled characteristics such as specific surface areas, crystallite sizes and anatase content. A comparative study was carried out by benchmarking with commercial Degussa P25 TiO2. The FSP TiO2 was shown to be more efficient in mineralising pollutants requiring direct charge transfer such as the saccharides, while P25 was better for mineralising alcoholic and aromatic compounds. Both catalysts were equally as active in mineralising carboxylic acids. Upon identifying the optimal synthesis of bare TiO2, an in situ co-precipitation of highly dispersed Pt on TiO2 was carried out in the flame. Deposition of Pt resulted in enhanced photocatalytic performance as a result of efficient charge trappings. It is highlighted here the inter-relationship between Pt oxidation states and the TiO2photocatalysis of carboxylic acid, alcohol and aromatic compounds. Depending on the mineralisation path adopted by the model organic compounds, they were shown to have direct influence on the Pt oxidation states. These oxidation states in turn affect the mineralisation rates of the organic compounds. Substitutional-doping of TiO2 with Fe(III) with tunable bandgap was also possible by FSP synthesis. The high temperature synthesis coupled with rapid quenching resulted in 5 times higher solubility limit (Fe/Ti = 0.05) than that previously reported in the literature. Under visible light irradiation, FSP-made Fe-TiO2 improved the photocatalytic mineralisation of oxalic acid by more than 6 times, with respect to P25 and FSP TiO2. Furthermore, the photocatalyst was reusable over a number of repetitions with minimal leaching or loss in activity. The last part of the work concerns the development of bare and Ru-doped Co-ZrO2 catalysts, where cobalt was finely dispersed within the zirconia matrix. Doping of Ru enhanced significantly the reducibility of cobalt, reducing even the embedded cobalt beneath the zirconia surface. It also increased the extent of CO-chemisorption and as such, enhanced the FT activity. This is the first time, catalysts of such type is synthesised and tested for FT reaction.
108

Synthesis and characterization of titanium dioxide thin films

Gan, Wee Yong, Chemical Sciences & Engineering, Faculty of Engineering, UNSW January 2009 (has links)
In this thesis, titanium dioxide (TiO2)-based thin film photocatalysts of different morphologies were synthesized and studied for their photoelectrocatalytic and photocatalytic properties. The superhydrophilicity of selected TiO2 films were also assessed. The work started with the synthesis of nanocrystalline TiO2 thin films with minimal porosity. A photoelectrocatalytic study was performed to evaluate the films?? photocurrent response in the presence of various organic compounds. At low concentrations, the amount of photocurrent generated was found to be influenced by the molecular structure of the organic compounds. As the concentration increased, the photocurrent response became dependent on the level of interaction of the organic compounds and their partially degraded intermediates with the TiO2 surface. Highly dispersed platinum (Pt) were added onto TiO2 films by a photo-deposition method, and their photocatalytic and photoelectrocatalytic activities were assessed using a novel thin-layer photo(electrochemical)-catalytic system. The system allowed the photocurrent data that originated from the photoelectrocatalysis process to be collected in the reaction cell, and the amount of organic compound being oxidized to be quantified. The Pt deposits were found to enhance photocatalysis by increasing the photogenerated charge-carriers separation, but conversely they retarded the photoelectrocatalysis process. The next part of the work covered the development of mesoporous TiO2 films via the evaporative-induced self-assembly procedure. The structural characteristics of the films were altered by controlling the relative humidity and temperature during the coating and thermal treatment processes. The effect of key structural parameters, such as film porosity, surface area and crystallinity, on the photoelectrocatalytic activity was investigated. These parameters were found to affect the photoelectrocatalysis because the performance of a catalyst in the photoelectrocatalysis application relies strongly on attributes such as the photocatalyst particles?? interconnectivity and the contact to the conducting substrate. The last part of this thesis demonstrated the effort undertaken to improve the UV-induced superhydrophilic effect of a TiO2 film. A multilayer structure of TiO2 nanoparticles was assembled to create a novel TiO2 film that required no UV-activation to induce a uniform water sheeting across its surface. The novel TiO2 thin film exhibited stable superhydrophilic wetting and anti-fogging behaviors after repetitive cycles of heat and wetting treatment, and this performance was affected by the porosity and surface hydroxyl (-OH) contents.
109

Photocatalytic reduction of selenate and selenite : water/wastewater treatment and the formation of nano-selenium compounds

Tan, Thatt Yang Timothy, School of Chemical Engineering & Industrial Chemistry, UNSW January 2003 (has links)
The current work investigates the photocatalytic reduction of selenium (Se) ions, selenate Se(VI) and selenite Se(IV), from two perspectives: Se ion removal from water and wastewater and the formation of nano-Se compounds. Se ion pollution has become an environmental issue in recent years, and hence there is an urgent need for an efficient removal technique. In addition, there is increasing interest in the formation of nano-size semiconductors for niche applications. Since Se is a semiconductor, its formation onto the semiconductor TiO2 could lead to the discovery of new composite materials. The current study has successfully elucidated the mechanism of Se ions reduction by photocatalysis. Factors such as the simultaneous adsorption of the Se ions (the electron scavenger in this case) and a suitable organic compound (the hole scavenger), and the chemical properties of the hole scavenger were crucial for effective and efficient Se ions photoreduction. Optimum conditions in relation to pH, concentrations and types of hole scavenger were reported and discussed. It was also found that stoichiometric adsorption ratio of formate and selenate resulted to optimum photoreduction rate. A modified Langmuir-Hinshelwood kinetic model that considered the simultaneous adsorption of both solutes was derived. The current investigation has also seen the successful formation Se deposits of different morphologies onto the TiO2 particles. Discrete Se particles of various sizes in the nano-size range as well as a Se film were deposited onto the TiO2 particles under different initial experimental conditions. The Se-TiO2 composite semiconductor was explored for the removal of cadmium Cd2+ ions, which resulted in the formation of CdSe-TiO2 systems. The photoreduction of Se ions using silver-modified TiO2 showed the enhanced reduction of Se ions to Se2- in the form of H2Se gas. It is suggested that the H2Se gas generated from the current photoreduction process could be used as a safer and cheaper technique in the formation of Se-compounds such copper selenide, cadmium selenide and zinc selenide. All these compounds were widely used in optical and semiconducting devices.
110

Photocatalytic reduction of selenate and selenite : water/wastewater treatment and the formation of nano-selenium compounds

Tan, Thatt Yang Timothy, School of Chemical Engineering & Industrial Chemistry, UNSW January 2003 (has links)
The current work investigates the photocatalytic reduction of selenium (Se) ions, selenate Se(VI) and selenite Se(IV), from two perspectives: Se ion removal from water and wastewater and the formation of nano-Se compounds. Se ion pollution has become an environmental issue in recent years, and hence there is an urgent need for an efficient removal technique. In addition, there is increasing interest in the formation of nano-size semiconductors for niche applications. Since Se is a semiconductor, its formation onto the semiconductor TiO2 could lead to the discovery of new composite materials. The current study has successfully elucidated the mechanism of Se ions reduction by photocatalysis. Factors such as the simultaneous adsorption of the Se ions (the electron scavenger in this case) and a suitable organic compound (the hole scavenger), and the chemical properties of the hole scavenger were crucial for effective and efficient Se ions photoreduction. Optimum conditions in relation to pH, concentrations and types of hole scavenger were reported and discussed. It was also found that stoichiometric adsorption ratio of formate and selenate resulted to optimum photoreduction rate. A modified Langmuir-Hinshelwood kinetic model that considered the simultaneous adsorption of both solutes was derived. The current investigation has also seen the successful formation Se deposits of different morphologies onto the TiO2 particles. Discrete Se particles of various sizes in the nano-size range as well as a Se film were deposited onto the TiO2 particles under different initial experimental conditions. The Se-TiO2 composite semiconductor was explored for the removal of cadmium Cd2+ ions, which resulted in the formation of CdSe-TiO2 systems. The photoreduction of Se ions using silver-modified TiO2 showed the enhanced reduction of Se ions to Se2- in the form of H2Se gas. It is suggested that the H2Se gas generated from the current photoreduction process could be used as a safer and cheaper technique in the formation of Se-compounds such copper selenide, cadmium selenide and zinc selenide. All these compounds were widely used in optical and semiconducting devices.

Page generated in 0.0391 seconds