• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • 1
  • Tagged with
  • 6
  • 6
  • 3
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Metabolic differentation in the lichen Cladonia portentosa from different wet nitrogen deposition regimes

Freitag, Sabine January 2010 (has links)
The deposition of atmospheric nitrogen is now recognized as a major driver of biodiversity changes at mid to high latitudes. It has previously been shown that regional variations in wet nitrogen deposition in the British Isles are reflected in broad targeted chemical parameters in the common heathland lichen Cladonia portentosa. A more detail analysis of alterations in the metabolic pathways in Cladonia portentosa collected from different locations within the UK was undertaken by applying the environmental metabolomics approach. Fourier transform infrared spectroscopy (FTIR) and liquid chromatography mass spectrometry (LC-MS) were applied in combination with principal component analysis (PCA) and partial least squares regression analysis (PLSR). The latter statistical method was used to correlate measured variables with modelled atmospheric data including wet nitrogen deposition, nitrogen concentration and precipitation. While FTIR in combination with PCA and PLSR revealed signatures of broad metabolic classes, LC-MS in combination with PCA and PLSR allowed the identification of betaine lipids (BL) as potential biomarkers of nitrogen enrichment. A compound tentatively identified as monoacylglycerol-(N,N,N trimethyl)-homoserine (MGTS) showed the strongest positive relation to increasing wet nitrogen deposition regimes and consequent phosphorus deficiency. In contrast, the structurally related phosphatidylcholine containing a C18:2 ester showed the opposite trend in natural populations of C. portentosa. Results obtained for C. portentosa collected from the N manipulation site Whim Moss indicated that ammonium is causal for the increase of two of the identified betaine lipids in natural populations in C. portentosa. Betaine lipids as well as the phosphatidylcholine biomarker could potentially be used to monitor nitrogen regimes and resulting phosphorus limitation on the lichen C. portentosa. The approach used for this study represented an effective integration of the complementary analytical techniques of FTIR and LC-MS in combination with multivariate statistical tools for environmental metabolomic studies.
2

The use of selective materials to reduce human exposure to ozone and oxides of nitrogen

Cros, Clément 05 November 2013 (has links)
Ozone (O₃) and oxides of nitrogen (NO[subscript x]) are ubiquitous pollutants in many urban areas around the world. Though they mostly originate outdoors, human inhalation exposure to these pollutants largely occurs indoors, because of the large fraction of our time spent inside buildings. Exposure to O₃ and nitrogen dioxide (NO₂) has been associated with decreased respiratory function, onset of asthma, and cardiovascular events. Through laboratory testing, field exposure and modeling, this study evaluates the feasibility and long-term efficiency of using passive removal materials (PRMs) both indoors and outdoors for removal of O₃ and NO[subscript x]. Three photocatalytic coatings used outdoors and four indoor building materials were tested for their capacity to remove NO[subscript x] and O₃. Since materials outdoors experience a wider range of environmental conditions than indoors, their effects on NO[subscript x] removal by photocatalytic coatings were evaluated through full factorial experiments representative of summertime outdoor conditions in Southeast Texas. Photocatalytic coatings were also exposed to real outdoor environments for a year to assess their long-term viability. Indoor materials were exposed to real indoor environments for a six-month period and tested monthly for their capacity to remove O₃. Carbonyl emissions from these materials before and after exposure to O₃ were also tested at regular intervals during the six-month period. Finally, removal capacity of NO and NO₂ by new indoor building materials was tested as well. For outdoor PRMs, results suggest that the effect of certain environmental parameters (contact time, relative humidity, temperature) on NO[subscript x] removal effectiveness are consistent across different photocatalytic coatings, while other effects are coating specific. The type of semiconductor used and resistance to wear of the coating are important factors in its ability to retain removal efficacy over time. For indoor PRMs, two of the four materials tested, an activated carbon mat and perlite-based ceiling tiles, exhibited consistent O₃ removal effectiveness over time with low carbonyl emissions, both before and after ozonation. All materials except for activated carbon mat had higher post-ozonation than pre-ozonation emissions. Post-ozonation emissions were dominated by nonanal. Simulation of the use of indoor and outdoor PRMs on a model building through multi-zone/CFD modeling showed that indoor PRMs alone could lead to concentration reductions up to 18 % for O₃ and 23 % for NO₂ in rooms of the model building selected. Addition of PRMs on the outside of the building led to small reductions in pollutant concentrations in the air infiltrating into the building, leading to negligible changes in indoor concentrations. / text
3

[en] NUMERICAL SIMULATION OF COMBUSTION AND POLLUTANTS FORMATION IN NATURAL GAS DIFFUSIVE FLAMES / [es] SIMULACIÓN NUMÉRICA DE LA COMBUESTIÓN Y FORMACIÓN DE POLUENTES EN UNA LLAMA DE GAS NATURAL / [pt] SIMULAÇÃO NUMÉRICA DA COMBUSTÃO E FORMAÇÃO DE POLUENTES EM UMA CHAMA DE GÁS NATURAL

ANDRE AUGUSTO ISNARD 24 August 2001 (has links)
[pt] Atualmente, vem ocorrendo um notável aumento de investimentos no setor de gás natural no Brasil. A utilização do gás natural para a geração de energia tem importantes atrativos como, por exemplo, a diversidade de oferta do gás e sua queima mais limpa em relação a outros combustíveis fósseis. Existe um crescente interesse em projetos, idéias e opções alternativas para melhorar a performance e reduzir as descargas poluentes de equipamentos de combustão industrial para o meio ambiente. A necessidade de processos mais eficientes e menos poluentes tem acelerado a busca por desenvolvimento tecnológico. No projeto desenvolvido, foi investigada a performance de um modelo baseado na formulação de volumes finitos, incluindo o modelo k-e de turbulência, o modelo generalizado de taxas finitas de Arrhenius e Magnussen para o cálculo das reações químicas, e o modelo de radiação por transferência discreta, para simular o processo de combustão em fornalhas industriais através da utilização do pacote comercial Fluent (versão 4.4). O principal objetivo do estudo foi o de investigar a performance deste modelo em simular a combustão e prever a formação de NO e CO em chamas industriais de gás natural através da comparação com dados experimentais. Para a simulação da combustão foram testados dois modelos, o primeiro correspondendo a uma única reação global de oxidação do metano (1 etapa), e o segundo composto por duas reações (2 etapas). Uma sensível evolução foi obtida empregando-se o modelo em duas etapas em comparação com o em uma etapa. Para a simulação da formação de NO foram testados sete casos diferentes. Nestes casos, foram principalmente investigados os mecanismos - thermal NOx -,- prompt NOx - e o método PDF para a representação da interação química- turbulência. Percebeu-se que o método PDF permitiu uma evolução na predição da formação de NO na fornalha. Além disso, o - prompt NOx - foi o mecanismo dominante e portanto faz-se necessária uma investigação mais aprofundada sobre as características desse mecanismo para melhores resultados na predição de NO. Apesar da evolução dos modelos empregados e de seus resultados durante o trabalho, são necessárias novas investigações para detectar possíveis melhorias em tais modelos que possibilitem previsões mais realistas para a formação de NO. / [en] Nowadays, a strong raise in investments is occurring in the natural gas segment in Brazil. The natural gas application for energy generation is very attractive due to many reasons, like the offering diversity and the cleaner burning in comparison with other fossil combustibles. There is an increasing interest in projects, ideas and alternative options for the improvement of the performance and reducing the pollutants discharges of industrial combustion equipments to the environment. The need for more efficient and less polluters processes has accelerated the search for technological development. In the present work, it was investigated the performance of a model based in the finite volume formulation including the k-e model of turbulence, the generalized finite rate model of Arrhenius and Magnussen for the chemical reactions calculations, and the discrete transfer radiation model for simulating the combustion processes in natural gas industrial flames using the commercial code Fluent (version 4.4). The main goal of the inquiry was to investigate the performance of such modeling approach in predicting NO and CO formation inside the furnace by the comparison with the experimental data. For the combustion modeling, two mechanisms were simulated. The first corresponding to an unique global reaction for the oxidation of methane (1 step), and the second corresponding to two reactions (2 steps). An evident evolution was obtained using the two steps model. Seven different cases were tested to predict the NO formation. In these cases, the main investigations were concentrated on the mechanisms -thermal NOx-, -prompt NOx- and on the PDF method for representing the interaction between chemistry and turbulence. The PDF method improved the prediction for the NO formation within the furnace. The -prompt NOx- was the dominating mechanism and therefore it is necessary a deeper investigation on the characteristics of this mechanism for better results in estimating the NO concentrations. Although the models, mechanisms and results have improved along the present research, new investigations are necessary for more accurated predictions for the NO formation. / [es] Atualmente, ha ocurrido un notable aumento de inversiones en el sector de gas natural en Brasil. La utilización del gas natural para la generación de energía tiene importantes atractivos como, por ejemplo, la diversidad de oferta del gas y su quema más limpia en relación a otros combustibles fósiles. Existe un cresciente intereés en proyectos, ideas y opciones alternativass para mejorar la calidad y reducir las descargas poluentes de equipos de combustión industrial para el medio ambiente. La necesidad de procesos más eficientes y menos poluentes ha acelerado la búsqueda del desarrollo tecnológico. En el proyecto desarrollado, se investigó la performance de un modelo basado en la formulación de volumes finitos, incluyendo el modelo k-e de turbulencia, el modelo generalizado de tasas finitas de Arrhenius y Magnusen para el cálculo de las reacciones químicas, y el modelo de radiación por transferencia discreta, para simular el proceso de combustión en hornos industriales a través de la utilización del software comercial Fluent (versión 4.4). El objetivo principal de este estudio fue el de investigar la performance de este modelo al simular la combustión y preveer la formación de NO y CO en llamas industriales de gas natural a través de la comparación con datos experimentales. Para la simulación de la combustión se provaron dos modelos, el primeiro corresponde a una única reacción global de oxidación del metano (1 etapa), y el segundo compuesto por dos reacciones (2 etapas). Se obtiene una sensible evolución al utilizar el modelo en dos etapas envés del modelo con una etapa. Para la simulación de la formación de NO se probaron siete casos diferentes. En estos casos, se ivestigaron principalmente los mecanismos - thermal NOx -,- prompt NOx - y el método PDF para la representación de la interacción química-turbulencia. Se observa que el método PDF permite una evolución en la predicción de la formación de NO en el horno. Además, el - prompt NOx - fue el mecanismo dominante y por lo tanto se hace necesario una investigación más profunda sobre las características de ese mecanismo para mejorar los resultados en la predición de NO. A pesar de la evolución de los modelos empleados y de sus resultados durante el trabajo, se necesitan nuevas investigaciones para detectar posibles mejorías que hagan posible previsiones más realistas para la formación de NO.
4

Studies of urban air quality using electrochemical based sensor instruments

Popoola, Olalekan Abdul Muiz January 2012 (has links)
Poor air quality has been projected to be the world’s top cause of environmental premature mortality by 2050 surpassing poor sanitation and dirty water (IGBP / IGAC press release, 2012 ). One of the major challenges of air quality management is how to adequately quantify both the spatial and temporal variations of pollutants for the purpose of implementing necessary mitigation measures. The work described in this thesis aims to address this problem using novel electrochemical based air quality (AQ) sensors. These instruments are shown to provide cost effective, portable, reliable, indicative measurements for urban air quality assessment as well as for personal exposure studies. Three principal pollutants CO, NO and NO2 are simultaneously measured in each unit of the AQ instrument including temperature / RH measurements as well as GPS (for time and position) and GPRS for data transmission. Laboratory studies showed that the electrochemical sensor nodes can be highly sensitive, showing linear response during calibration tests at ppb level (0-160 ppb). The instrumental detection limits were found to be < 4 ppb (CO and NO) and < 1 ppb for NO2 with fast response time equivalent to t90 < 20 s. Several field studies were carried out involving deployment of both the mobile and static electrochemical sensor nodes. Results from some short-term studies in four different cities including Cambridge (UK), London (UK), Valencia (Spain) and Lagos (Nigeria) are presented. The measurements in these cities represent snapshot of the pollution levels, the stark contrast between the pollution level especially CO (mean mixing ratio of 16 ppm over 3 hrs) in Lagos and the other three cities is a reflection of the poor air quality in that part of the world. Results from long-term AQ monitoring using network of 46 static AQ sensors were used to characterise pollution in different environments ranging from urban to semi-urban and rural locations. By coupling meteorological information (wind measurements) with pollution data, pollution sources, and phenomena like the street canyon effect can be studied. Results from the long-term study also revealed that siting of the current fixed monitoring stations can fail to represent the actual air quality distribution and may therefore be unrepresentative. This work has shown the capability of electrochemical based AQ sensors in complementing the existing fixed site monitors thus demonstrating an emerging measurement paradigm for air quality monitoring and regulation, source attribution and human exposure studies.
5

Evaluation of the Influence of Non-Conventional Sources of Emissions on Ambient Air Pollutant Concentrations in North Texas

Lim, Guo Quan 08 1900 (has links)
Emissions of air pollutants from non-conventional sources have been on the rise in the North Texas area over the past decade. These include primary pollutants such as volatile organic compound (VOC) and oxides of nitrogen (NOx) which also act as precursors in the formation of ozone. Most of these have been attributed to a significant increase in oil and gas production activities since 2000 within the Barnett Shale region adjacent to the Dallas-Fort Worth metroplex region. In this study, air quality concentrations measured at the Denton Airport and Dallas Hinton monitoring sites operated by the Texas Commission on Environmental Quality (TCEQ) were evaluated. VOC concentration data from canister-based sampling along with continuous measurement of oxides of nitrogen (NOx), ozone (O3), particulate matter (PM2.5), and meteorological conditions at these two sites spanning from 2000 through 2014 were employed in this study. The Dallas site is located within the urban core of one of the fastest growing cities in the United States, while the Denton site is an exurban site with rural characteristics to it. The Denton Airport site was influenced by natural gas pads surrounding it while there are very few natural gas production facilities within close proximity to the Dallas Hinton site. As of 2013, there were 1362 gas pads within a 10 mile radius to the Denton Airport site but there were only 2 within a 10 mile radius to Dallas Hinton site. The Dallas site displayed higher concentrations of NOx and much lower concentrations of VOC than the Denton site. Extremely high levels of VOC measured at the Denton site corresponded with the increase in oil and gas production activities in close proximity to the monitoring site. Ethane and propane are two major contributors to the measured VOC concentration, suggesting the influence of fugitive emissions of natural gas. In Dallas, the mean and maximum values of ozone had decreased since 2000 by about 2% and 25%, respectively. Similarly NOx decreased by 50% and 18% in the mean and maximum values. However, the mean VOC value showed a 21% decrease while the maximum value increased by about 46%. In Denton, the change in percentage of ozone and NOx were similar to Dallas but the mean VOC concentration increased by about 620% while the max value increased 1960%. Source apportionment analysis confirmed the findings by identifying the production of natural gas to be the primary source of VOC emissions in Denton, while traffic sources were more influential near the Dallas site. In light of the recent proposal by EPA to revise the ozone standard, the influence of these new unconventional sources should be further evaluated.
6

Nitrogen Tetroxide to Mixed Oxides of Nitrogen: History, Usage, Synthesis, and Composition Determination

Andrew W Head (11181636) 22 November 2021 (has links)
<div>Since as early as the 1920s, dinitrogen tetroxide (N2O4) has been regarded as a promising oxidizer in rocket propulsion systems. In more recent times, its predecessor, mixed oxides of nitrogen (MON), remains a top contender among oxidizers, due to its unique characteristics such as low freezing temperature and compatibility with common spacecraft materials. Today, these N2O4-based oxidizers are the preferred choice in many upper stages, launch escape systems, reaction control systems, liquid apogee engines, and in-space primary propulsion systems. N2O4-based oxidizers are a key factor in rocket propulsion, and thoroughly understanding their history, development, characteristics, synthesis, and composition analysis are crucial for space exploration today and into the future.<br><br></div><div>To fully understand and predict the physical properties of a MON sample, it is important to measure and quantify its chemical composition. The recommended method for MON composition analysis, as prescribed by the Department of Defense’s Defense Specification (MIL-SPEC) document on N2O4, involves the oxidation of NO and dinitrogen trioxide (N2O3) in the MON sample to determine their amounts. An equation unofficially called the “MIL-SPEC equation” is then used to determine the amount of NO needed to mix with N2O4 to synthesize that particular MON sample. However, no explanation is given as to how the equation was derived, or its significance.<br><br></div><div>This thesis aims to collect and organize key information on the synthesis, handling, and composition analysis of MON propellant. First, the history of development of N2O4-based oxidizers was researched, and current and future uses of N2O4 and MON propellants were identified. Then a method for synthesis and composition analysis was devised and tested. Water contamination was expected of skewing the results, so the process of water contamination was examined analytically. Then a detailed derivation of the MIL-SPEC equation was conducted, to fully understand its mechanics. An attempt was then made to reverse-engineer an unexplained numerical value in the equation, labeled by the author as the “solubility factor”. Several derivations were provided with varying degrees of complexity, producing alternative solubility factors of varying accuracies. Finally, experimental data was applied to these derived, hypothetical solubility factors and the MIL-SPEC solubility factor, with the intent of determining whether improvements could be made to the MON composition determination process.<br><br></div><div>The results suggest that the MIL-SPEC equation is sufficient for providing a relatively accurate measurement of the composition of a MON sample, while also being easy to implement, both in taking the necessary measurements and in conducting the numerical calculation. However, some minor adjustments to the equation could produce consistently more accurate composition measurements without adding any more difficulty or complication.</div>

Page generated in 0.0823 seconds