• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 109
  • 26
  • 13
  • 10
  • 10
  • 9
  • 6
  • 6
  • 5
  • 3
  • 1
  • 1
  • Tagged with
  • 240
  • 74
  • 69
  • 64
  • 63
  • 46
  • 44
  • 39
  • 39
  • 33
  • 29
  • 26
  • 26
  • 25
  • 24
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
71

Návrh výroby kompozitní kyvné vidlice / Manufacturing concept of a composite swing arm

Gregor, Lukáš January 2020 (has links)
The subject of this master’s thesis is manufacturing design and production of CFRP swingarm prototype for off-road motorcycle. Theoretical part describes conventional types of swingarm, provides basic introduction to composites and manufacturing technologies. Practical part describes production steps, assembly jigs and assembly process. The last part of thesis deals with measuring stiffness properties using photogrammetry system TRITOP.
72

The role of sensitivity matrix formulation on damage detection via EIT in non-planar CFRP laminates with surface-mounted electrodes

Monica Somanagoud Sannamani (10997835) 23 July 2021 (has links)
<div><p>Carbon fibre reinforced polymers (CFRPs) are extensively used in aerospace, automotive and other weight-conscious applications for their high strength-to-weight ratio. Utilization of these lightweight materials unfortunately also involves dealing with damages unlike those seen in traditional monolithic materials. This includes invisible, below-the-surface damages such as matrix cracking, delaminations, fibre breakage, etc. that are difficult to spot outwardly in their early stages. Robust methods of damage detection and health monitoring are hence important. With the intention of avoiding weight addition to the structure to monitor its usability, it would be desirable to utilize an inherent property of these materials, such as its electrical conductivity, as an indicator of damage to render the material as self-sensing.</p> <p>To this end, electrical impedance tomography (EIT) has been explored for damage detection and health monitoring in self-sensing materials due to its ability to spatially localize damage via non-invasive electrical measurements.</p> <p>Presently, EIT has been applied mainly to materials possessing lesser electrical anisotropy than is encountered in CFRPs (e.g. nanofiller-modified polymers and cements), with experimental setups involving electrodes placed at the edges of plates. The inability of EIT to effectively tackle electrical anisotropy limits its usage in CFRP structures. Moreover, most real structures of complex geometries lack well-defined edges on which electrodes can be placed. Therefore, in this thesis, we confront these limitations by presenting a study into the effect of EIT sensitivity matrix formulation and surface-mounted electrodes on damage detection and localization in CFRPs.</p> <p>In this work, the conductivity is modeled as being anisotropic, and the sensitivity matrix is formed using three approaches – with respect to i) a scalar multiple of the conductivity tensor, ii) the in-plane conductivity, and iii) the through-thickness conductivity. It was found that through-hole damages can be adeptly identified with a combination of surface-mounted electrodes and a sensitivity matrix formed with respect to either a scalar multiple of the conductivity tensor or the in-plane conductivity. This theory was first validated on a CFRP plate to detect a single through-hole damage. Furthermore, EIT was also used to successfully detect both through-hole and impact damages on a non-planar airfoil shaped structure.</p> <p>Singular value decomposition (SVD) analysis revealed that the rank of the sensitivity matrix is not affected by the conductivity term with respect to which the sensitivity matrix is formed. The results presented here are an important step towards the transition of EIT based diagnostics to real-life CFRP structures.</p><p></p></div><div><div><br></div></div>
73

Effects of ply-specific laser treatment on mechanical strength of composite scarf joints

Yousef, Jassem A. Al 06 1900 (has links)
Carbon fiber reinforced polymer (CFRP) is widely used in the industrial world due to its high strength-to-weight ratio. Aerospace manufacturers incorporate CFRP into the main structure of their flight vehicles. The extensive use of CFRP sparks the interest in efficient methods for manufacturing and repair. One of the most used repair methods is the bonded joint method, which includes different types of joints, e.g. scarf joint, step joint and single-lap joint. Scarf joint is generally selected for repair method due to its derived outcome. To improve strength of the bonded joint, the mating adherend surfaces are usually treated before being bonded. This treatment aims to enhance the mechanical interlocking and absorption properties between adhesive and adherend. Manual or electrical sanding is a standard method currently used in the industry. Recently, laser treatment is of high interest due to its potential for an automated process and consistent results. Laser treatment is usually preformed uniformly across the CFRP, regardless of the stacking sequence. This process may introduce local enhancement in some ply orientations, but also damage in other plies. This work investigates the effect of local (ply-specific) treatment on the scarf joint strength of CFRP. Effects of laser fluence (energy density) on treated ply were evaluated using surface characterization methods, viz. optical microscopy, profilometry and sessile drop technique. Finally, tensile test was performed on CFRP scarf joint. Results show that ply-specific laser treatment improves the tensile strength of CFRP scarf joint. The treatment offers localized enhancement to the surface properties and bonding strength, which results in overall tensile strength improvement.
74

Torsional Stiffness and Natural Frequency Analysis of a Formula SAE Vehicle Carbon Fiber Reinforced Polymer Chassis Using Finite Element Analysis

Herrmann, Manuel 01 December 2016 (has links) (PDF)
Finite element is used to predict the torsional stiffness and natural frequency response of a FSAE vehicle hybrid chassis, utilizing a carbon fiber reinforced polymer sandwich structure monocoque and a tubular steel spaceframe. To accurately model the stiffness response of the sandwich structure, a series of material tests for different fiber types has been performed and the material properties have been validated by modeling a simple three-point-bend test panel and comparing the results with a physical test. The torsional stiffness model of the chassis was validated with a physical test, too. The stiffness prediction matches the test results within 6%. The model was then used to model the natural frequency response by adding and adjusting the materials’ densities in order to match physical mass properties. A hypothesis is made to explain the failure of the engine mounts under the dynamic response of the frame.
75

Effect of Autoclave Process Parameters on Mechanical Behaviors of Carbon Fiber Reinforced Polymer Composites Fabricated via Additive Manufacturing

Nguyen, Quang Hao 01 January 2023 (has links) (PDF)
Additively manufactured carbon fiber reinforced polymers (CFRP) are vastly studied for their remarkable mechanical properties compared to most other 3D printed materials. Different methods were employed to further increase mechanical performance of CFRP 3D printed parts. The objective of the study is to investigate the effect of autoclave postprocessing on the interlaminar shear behavior between 3D printed CFRP layers. 3D printed CFRP samples were processed with nine combinations of temperature and vacuum in an autoclave. Short beam shear (SBS) tests were performed to characterize the interlaminar shear strength (ILSS) of the samples after autoclave processing. Digital image correlation (DIC) was utilized to quantify the strain and failure mode of the samples during SBS tests. From SBS mechanical tests, the curing temperature and vacuum of 170 C and -90 kPa produced samples with the highest ILSS, 39 MPa, a 46% improvement compared to uncured samples. The observed failure modes were fracture and delamination. Little work in additive manufacturing has applied autoclave as a post-process procedure. This study aims to explore this technique and establish its viability in improving mechanical performance of 3D printed fiber-reinforced parts.
76

Experimental Study of the Behaviour and Strength of Deep Concrete Beams Reinforced with CFRP Bars

Zeididouzandeh, Mohammadreza 10 1900 (has links)
An experimental program was conducted to investigate the strength and deformations of deep beams reinforced with Carbon Fibre Reinforced Polymer (CFRP) longitudinal and transverse reinforcement. Two groups of beams were tested, with each group comprising three beams. Two of the three beams in each group were reinforced with CFRP bars while the third beam was reinforced with conventional rebars and the latter beam was used as a control specimen. Beams in group 1 had span-to-depth ratio of one, while those in group 2 had a span-to-depth ratio of two. Beams in both groups had height of 900 mm and width of 250 mm. All the beams were simply supported and were tested in four-point bending with the point loads applied at one-third of the span. The test results revealed no significant difference between the behavior of the FRP reinforced beams and the companion control beams. On the other hand due to lack of hooks at the ends of the CFRP bars, and the loss of bond between the CFRP fibres and the sand grains on the surface of the bar, the failure in the CFRP reinforced beams was caused by the loss of anchorage while in the steel reinforced beams, the failure was initiated by the yielding of the longitudinal steel, followed by the crushing of the horizontal compression strut, but the nodal zones did not fail in any of the beams. Consequently, it was concluded that CFRP reinforced deep beams could be designed using the current CSA method for conventional steel reinforced concrete deep beams, provided the anchorage or bond strength of FRP bars could be properly determined. The existing nodal efficiency factors for the CCC nodal zones, as given in the CSA A23.3. standard, could be applied to CFRP reinforced beams while the corresponding factor for the CCT zone may be conservatively assumed to be 0.68. Finally, despite the linear elastic behavior of CFRP reinforcement, deep beams reinforced with CFRP bars could be designed using strut and tie models. / Thesis / Master of Applied Science (MASc)
77

Tests of concrete flanged beams reinforced with CFRP bars.

Ashour, Ashraf, Family, M. 11 1900 (has links)
yes / Tests results of three flanged and two rectangular cross-section concrete beams reinforced with carbon fibre reinforced polymer (CFRP) bars are reported. In addition, a companion concrete flanged beam reinforced with steel bars is tested for comparison purposes. The amount of CFRP reinforcement used and flange thickness were the main parameters investigated in the test specimens. One CFRP reinforced concrete rectangular beam exhibited concrete crushing failure mode, whereas the other four CFRP reinforced concrete beams failed due to tensile rupture of CFRP bars. The ACI 440 design guide for FRP reinforced concrete members underestimated the moment capacity of beams failed due to CFRP tensile rupture and reasonably predicted deflections of the beams tested. A simplified theoretical analysis for estimating the moment capacity of concrete flanged beams reinforced with FRP bars was developed. The experimental moment capacity of the CFRP reinforced concrete beams tested compared favourably with that predicted by the theoretical analysis developed.
78

Micromechanical Behavior of Fiber-Reinforced Composites using Finite Element Simulation and Deep Learning

Sepasdar, Reza 07 October 2021 (has links)
This dissertation studies the micromechanical behavior of high-performance carbon fiber-reinforced polymer (CFRP) composites through high-fidelity numerical simulations. We investigated multiple transverse cracking of cross-ply CFRP laminates on the microstructure level through simulating large numerical models. Such an investigation demands an efficient numerical framework along with significant computational power. Hence, an efficient numerical framework was developed for simulating 2-D representations of CFRP composites' microstructure. The framework utilizes a nonlinear interface-enriched generalized finite element method (IGFEM) scheme which significantly decreases the computational cost. The framework was also designed to be fast and memory-efficient to enable simulating large numerical models. By utilizing the developed framework, the impacts of a few parameters on the evolution of transverse crack density in cross-ply CFRP laminates were studied. The considered parameters were characteristics of fiber/matrix cohesive interfaces, matrix stiffness, $0^{circ}$~plies longitudinal stiffness. We also developed a micromechanical framework for efficient and accurate simulation of damage propagation and failure in aligned discontinuous carbon fiber-reinforced composites under loading along the fibers' direction. The framework was validated based on the experimental results of a recently developed 3-D printed aligned discontinuous carbon fiber-reinforced composite as the composite of interest. The framework was then utilized to investigate the impacts of a few parameters of the constitutive equations on the strength and failure pattern of the composites of interest. This dissertation also contributes towards improving the computational efficiency of CFRP composites' simulations. We exhaustively investigated the cause of a convergence difficulty in finite element analyses caused by cohesive zone models (CZMs) which are commonly used to simulate fiber/matrix interfaces in CFRP composites. The CZMs' convergence difficulty significantly increases the computational burden. For the first time, we explained the root of the convergence difficulty and proposed a simple technique to overcome the convergence issue. The proposed technique outperformed the existing methods in terms of accuracy and computational cost. We also proposed a deep learning framework for predicting full-field distributions of mechanical responses in 2-D representations of CFRP composites based on the geometry of the microstructures. The deep learning framework can be used as a surrogate to the expensive and time-consuming finite element simulations. The proposed framework was able to accurately predict the stress distribution at an early stage of damage initiation and the failure pattern in representations of CFRP composites microstructure under transverse tension. / Doctor of Philosophy / Carbon fiber-reinforced polymers (CFRPs) are materials that are lightweight with excellent mechanical performance. Hence, these materials have a wide range of applications in various industries such as aerospace, automotive, and civil engineering. The extensive use of CFRPs has made them an active area of research and there have been great efforts to better understand and improve the mechanical properties of these materials over the past few decades. Therefore, CFRP materials and their manufacturing process are constantly changing and new types of CFRPs are kept being developed. As a result, the mechanical behavior of CFRPs needs to be exhaustively investigated to provide guidelines for their optimal engineering design and indicate the future direction of manufacturing improvements. This dissertation studied the mechanical behavior of CFRPs through high-fidelity simulations. Two types of CFRP were investigated: laminates and 3-D printed CFRPs. Laminates are the most popular type of CFRPs which are commonly used to construct the body of aircraft. 3-D printed CFRPs are new types of material that are gaining traction due to their ability to construct structures with complex geometries at high speed and without direct human supervision. The numerical simulations of CFRPs under mechanical loading are time-consuming and require significant computational power even when run on a supercomputer. Hence, this dissertation also contributes to improving the computational efficiency of numerical simulations. To decrease the computational cost, we proposed a technique that can significantly speed up the numerical simulations of CFRPs. Moreover, we utilized artificial intelligence to develop a new framework that can be substituted for the expensive and time-consuming conventional numerical simulations to quickly predict specific mechanical responses of CFRPs.
79

Carbon Fiber Reinforced Polymer Retrofits to Increase the Flexural Capacity of Deteriorated Steel Members

Sherry, Samuel Thomas 10 September 2021 (has links)
The load-carrying capacity of aging bridge members may at times be found insufficient due to deterioration and a historical trend towards increased truck axle loads beyond their design capacity. Structurally deficient bridges are problematic for bridge owners and users because they restrict traffic usage and require bridges to be posted (operate at less than their ideal capacity). Structural deficiency is the primary motivation for bridge owners to retrofit bridges to meet a specified operating demand. It may be required to replace or retrofit a portion or all of a deficient bridge. The replacement of an entire bridge or even a part of the bridge is generally less desirable than a retrofit solution because retrofits are generally a cheaper alternative to the entire replacement of a structure and usually do not require the bridge's closure. Standard strengthening solutions for corroded members include bolting or welding steel cover plates, replacing sections of the girder, or adding external prestressed tendons. However, these methods also have several challenges, including required lane closures, high installation costs, increased dead weight, and continuing corrosion issues. One alternative to conventional retrofits is the use of carbon fiber-reinforced polymer (CFRP) laminates, which can be adhered to increase both strength and stiffness. CFRPs are a highly tailorable material with an extremely high strength-to-weight ratio, ease of installation and can potentially mitigate further corrosion concerns. Fiber Reinforced Polymers (FRPs) have already been widely accepted as a means of retrofitting reinforced concrete structures (AASHTO 2012, 2018a; ACI 2002, 2017; National Academies of Sciences, Engineering 2010, 2019) but have not yet been widely adopted in the steel industry due to the retrofit's material limitations (lower elastic modulus [less than 29,000 ksi], unanswered questions related to debonding, and no unified design or installation guides). However, newly developed materials and manufacturing processes have allowed for the economic development of stiffer CFRP materials suitable for steel structures, such as the high modulus (HM) CFRP strand sheet. This research analytically and experimentally investigates how newly developed HM strand sheets perform in small scale tensile testing and large scale flexural testing (laboratory and in situ testing). During the laboratory testing, these HM strand sheets were compared against normal modulus (NM) CFRP plates to draw conclusions on these different retrofitting materials (strength, stiffness, bond behavior, and applicability of the retrofit). Another central point in examing these different retrofit materials is how CFRPs perform when attached to structural steel with significant corrosion damage. Corrosion damage typically results in a variable surface profile, which may affect a CFRP retrofit's bond behavior. While limited laboratory testing has been conducted on CFRP attached to steel structures with simulated deterioration, the surface profile does not represent realistic conditions. The effects of a variable surface profile on the NM plate material and HM strand sheet were investigated using small scale tensile testing and large scale flexural testing. All the variable surface profiles tested for bond strength were fabricated based on "representative" simulated corrosion samples or on specimens with significant corrosion. Once all the variables pertaining to the new materials and the effect of a variable surface profile on CFRP retrofits had been examined in a laboratory setting, these retrofitting techniques were implemented on deteriorated in-service steel bridge structures. This research was the first to retrofit deteriorated in-service bridge structures with HM CFRP strand sheets in the United States. This in situ testing was used to compare the laboratory test data of an individually retrofitted girder to the behavior of a single girder that had been retrofitted in a bridge structure. This information was used to verify results on the behaviors of strengthening, stiffening, effects on live load distributions, and modeling assumptions of retrofitted bridge structures. The results from the laboratory testing and in situ testing of CFRP retrofits on corroded steel structures were synthesized to provide information on performance and design guidance for future retrofits. This dissertation provides additional information on CFRP retrofits applied to variable surface profiles and provides data on new CFRP materials (HM strand sheets). With this information, Departments of Transportation (DOT) can be confident as to where and when different types of CFRPs are a suitable retrofit material for corroded or uncorroded steel structures. / Doctor of Philosophy / The capacity of aging bridges may at times be found insufficient due to deterioration and a trend towards increased loading. Structurally deficient bridges are problematic for bridge owners and users because they restrict traffic usage and require bridges to operate at less than their intended capacity. Inadequate capacity are the primary motivation for bridge owners to repair (retrofit) bridges to meet specified traffic demands. Repairs usually do not require the bridge's closure to traffic. Standard repairs for corroded steel members include bolting or welding steel cover plates, replacing sections of the girder, or adding external prestressed tendons. However, these methods also have several challenges, including required bridge closures, high installation costs, increased weight, and continuing corrosion issues. One alternative to conventional repairs is the use of carbon fiber-reinforced polymer (CFRP) laminates, which can be adhered to the deteriorated members to increase strength and stiffness. CFRPs are an extremely versatile material with high strength, high stiffness, ease of installation and can potentially mitigate concerns about further corrosion. Fiber Reinforced Polymers (FRPs) have already been widely accepted as a means of retrofitting reinforced concrete structures(AASHTO 2012, 2018a; ACI 2002, 2017; National Academies of Sciences, Engineering 2010, 2019) but have not yet been widely adopted in the steel industry due to the lack of literature and economical implementation of the CFRPs on steel. However, over the past 20 years, research has been completed on the application of CFRPs on steel, and newly developed materials were created for the economic implementation of CFRP materials suitable for steel structures. In particular, this material is a high modulus (HM) CFRP strand sheet, which has a higher stiffness than a conventional CFRP. This research investigated how newly developed HM strand sheets perform in small-scale laboratory testing and large-scale laboratory testing. Where material strengths, bondability, and the efficacy of different repairs were examined against conventional means on steel structures with and without corrosion deterioration. Once all the variables pertaining to the new materials and the effects corrosion had on CFRP retrofits had been examined in a laboratory setting, these retrofitting techniques were implemented on a deteriorated in-service steel bridge structure (field study) that required repair. This research was the first to repair deteriorated in-use bridge structures with HM CFRP strand sheets in the United States. This information was used to verify results on the material's behavior. The laboratory testing and field testing of CFRP retrofits on corroded steel structures were summarized to provide information on performance and design guidance for future retrofits. This dissertation provides additional information on CFRP repairs applied to corroded steel and provides data on new CFRP materials (HM strand sheets). With this information, Departments of Transportation (DOT) can be confident as to where and when different types of CFRPs are a suitable retrofit material for corroded or uncorroded steel structures.
80

CFRP as Shear and End-Zone Reinforcement for Concrete Bridge Girders

Magee, Mitchell Drake 29 June 2016 (has links)
Corrosion of reinforcing steel is a major cause of damage to bridges in the United States. A possible solution to the corrosion issue is carbon fiber reinforced polymer (CFRP) material. CFRP material has been implemented as flexural reinforcement in many cases, but not as transverse reinforcing. The CFRP material studied in this thesis was NEFMAC grid, which consists of vertical and horizontal CFRP tows that form an 8 in. by 10 in. grid. The use of NEFMAC grid as transverse reinforcing has not been previously investigated. First, the development length of NEFMAC grid was determined. Next, an 18 ft long 19 in. deep beam, modeled after prestressed Bulb-T beams, was created with NEFMAC grid reinforcement. The beam was loaded with a single point load near the support to induce shear failure. Beams were fitted with instrumentation to capture shear cracking data. Shear capacity calculations following four methods were compared to test results. Lastly, a parametric study with strut-and-tie modeling was performed on Precast Bulb-T (PCBT) girders to determine the amount of CFRP grid needed for reinforcement in the anchorage zone. This thesis concludes that NEFMAC grid is a viable shear design option and presents the initial recommendations for design methods. These methods provide a basis for the design of NEFMAC grid shear reinforcing that could be used as a starting point for future testing of full scale specimens. When designing with NEFMAC grid, the full manufacturer's guaranteed strength should be used as it is the average reduced by three standard deviations. AASHTO modified compression field theory provides the best prediction of shear capacity. For anchorage zone design, working stress limits for CFRP grids need to be increased to allow more of the strength to be implemented in design. / Master of Science

Page generated in 0.0291 seconds