• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1641
  • 858
  • 358
  • 176
  • 173
  • 66
  • 52
  • 52
  • 52
  • 52
  • 52
  • 52
  • 50
  • 40
  • 28
  • Tagged with
  • 4066
  • 4066
  • 4066
  • 879
  • 877
  • 774
  • 712
  • 671
  • 654
  • 392
  • 385
  • 374
  • 358
  • 354
  • 303
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
471

Dynamic Analysis of Plane Frames

Malekamdani, Zohreh 01 January 1983 (has links)
No description available.
472

A finite element method for unsteady heat conduction in materials with or without phase change /

Ronel, Yoav. January 1980 (has links)
No description available.
473

Tetraaedra to hexahedra conversion for finite element analysis /

Carmona Garcia, Alejandra, January 1900 (has links)
Thesis (M.App.Sc.) - Carleton University, 2002. / Includes bibliographical references (p. 90-94). Also available in electronic format on the Internet.
474

The Steepest Descent Method Using Finite Elements for Systems of Nonlinear Partial Differential Equations

Liaw, Mou-yung Morris 08 1900 (has links)
The purpose of this paper is to develop a general method for using Finite Elements in the Steepest Descent Method. The main application is to a partial differential equation for a Transonic Flow Problem. It is also applied to Burger's equation, Laplace's equation and the minimal surface equation. The entire method is tested by computer runs which give satisfactory results. The validity of certain of the procedures used are proved theoretically. The way that the writer handles finite elements is quite different from traditional finite element methods. The variational principle is not needed. The theory is based upon the calculation of a matrix representation of operators in the gradient of a certain functional. Systematic use is made of local interpolation functions.
475

A finite element method for unsteady heat conduction in materials with or without phase change /

Ronel, Yoav. January 1980 (has links)
No description available.
476

Bridging Scale Simulation of Lattice Fracture and Dynamics using Enriched Space-Time Finite Element Method

Chirputkar, Shardool U. 23 September 2011 (has links)
No description available.
477

A Feasiblity Study on the Fatigue Performance of Laser Beam Welds and Hybrid-Laser Arc Welds Used in an Innovative Modular Steel Sandwich Panel Bridge Deck SyStem

Passarelli, Garrett J. 09 November 2011 (has links)
This research investigation explores the feasibility of implementing a laser welded sandwich steel panel bridge deck system as a viable alternative to standardized reinforced concrete bridge decks. Generally used in naval ship building applications, steel sandwich panels possess attractive characteristics towards the integration with bridge infrastructure such as service life in excess of 100 plus years, dead load reduction, rapid construction, decreased closure time, and automated mass production. The lack of fatigue data for the laser "stake" welds used to create the enclosed sandwich panel geometry raised concerns with respect to fatigue life. The primary focus of this study was to determine whether or not infinite fatigue life was possible. Two different laser welding technologies were investigated, Laser Beam Welding (LBW) and Hybrid-Laser Arc Welding (HLAW). Test specimens were fabricated and tested in order to examine fatigue resistance based on a localized load effect between adjacent core stiffeners. Finite element models were used to obtain the stress range for each individual test due to complex geometry and partially restrained boundary conditions. In order to assess the fatigue performance of the overall deck system, additional finite element models were created to study the local and global behavior of different sandwich panel configurations. As a whole the investigation yielded promising results. Infinite fatigue life is achievable due to outstanding fatigue performance. The HLAW stake welds demonstrated superior fatigue resistance in comparison to the LBW process. Localized load effects can be minimized through the modification of different panel parameters. Pushing forward, full scale testing is essential to the future employment of this innovative bridge deck system. / Master of Science
478

A Hermite Cubic Immersed Finite Element Space for Beam Design Problems

Wang, Tzin Shaun 24 May 2005 (has links)
This thesis develops an immersed finite element (IFE) space for numerical simulations arising from beam design with multiple materials. This IFE space is based upon meshes that can be independent of interface of the materials used to form a beam. Both the forward and inverse problems associated with the beam equation are considered. The order of accuracy of this IFE space is numerically investigated from the point of view of both the interpolation and finite element solution of the interface boundary value problems. Both single and multiple interfaces are considered in our numerical simulation. The results demonstrate that this IFE space has the optimal order of approximation capability. / Master of Science
479

Ultimate load analysis using finite element methods

Cimento, Arthur Peter. January 1978 (has links)
Thesis: B.S., Massachusetts Institute of Technology, Department of Mechanical Engineering, 1978 / Includes bibliographical references. / by Arthur P. Cimento. / B.S. / B.S. Massachusetts Institute of Technology, Department of Mechanical Engineering
480

High-performance direct solution of finite element problems on multi-core processors

Guney, Murat Efe 04 May 2010 (has links)
A direct solution procedure is proposed and developed which exploits the parallelism that exists in current symmetric multiprocessing (SMP) multi-core processors. Several algorithms are proposed and developed to improve the performance of the direct solution of FE problems. A high-performance sparse direct solver is developed which allows experimentation with the newly developed and existing algorithms. The performance of the algorithms is investigated using a large set of FE problems. Furthermore, operation count estimations are developed to further assess various algorithms. An out-of-core version of the solver is developed to reduce the memory requirements for the solution. I/O is performed asynchronously without blocking the thread that makes the I/O request. Asynchronous I/O allows overlapping factorization and triangular solution computations with I/O. The performance of the developed solver is demonstrated on a large number of test problems. A problem with nearly 10 million degree of freedoms is solved on a low price desktop computer using the out-of-core version of the direct solver. Furthermore, the developed solver usually outperforms a commonly used shared memory solver.

Page generated in 0.1207 seconds