• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • 1
  • Tagged with
  • 5
  • 5
  • 4
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

The future of radiofrequency ablation is looking BETA : short and long term studies of bimodal electric tissue ablation (BETA) in a porcine model.

Dobbins, Christopher January 2008 (has links)
Introduction: Radiofrequency ablation (RFA) is a popular method of treating unresectable liver tumours by the use of a high frequency, alternating electrical current that heats and destroys tumour cells. The size of the ablation is limited by localised charring of adjacent tissue that prevents further conduction of the radiofrequency current. In the clinical setting, this results in increased rates of local recurrence in tumours that are greater than 3 cm in diameter as multiple, overlapping ablations need to be performed to treat the one tumour. To overcome this problem, a modified form of RFA called Bimodal Electric Tissue Ablation (BETA) has been created. BETA adds a direct electrical current to the alternating radiofrequency current, thus establishing its bimodal character. When direct currents are used in biological tissues, water is transferred from anode to cathode by a process called electro-osmosis. By attaching the cathode to the radiofrequency electrode, water is attracted to the area thus preventing tissue desiccation and charring. The BETA circuit has been constructed and tested using a porcine model. The aims of the studies are to confirm that larger ablations can be produced with the BETA system and that it is safe to use in an animal model. Three studies have been performed to test these aims in porcine liver. Methods: The first study was designed to compare sizes of the ablation produced between standard RFA and the BETA circuit. This was followed by a long-term study to assess associated changes to liver function and pathological changes within the liver as well as identifying any other treatment related morbidity. The third study assessed the difference in ablation size and safety aspects when the positive electrode of the direct current circuitry was moved from small surface area under the skin to a large surface area on the skin. Results: Ablations with significantly larger diameters are created with the BETA circuit using a multi-tine needle (49.55 mm versus 27.78 mm, p<0.001). This finding was confirmed in the third experiment using a straight needle (25 mm versus 15.33 mm, p<0.001). Ablations produced by the BETA circuit induce coagulative necrosis within the treated liver and the injury heals by fibrosis in a manner similar to other thermal therapies. Significant rises in some serum liver enzymes are seen within 24 hours of treatment but these return to normal within 4 days. An electrolytic type injury can be produced at the site of the positive electrode. By increasing the surface area of this electrode, the risk of tissue damage is decreased but ablations are significantly smaller (18 mm versus 25 mm, p<0.001). Conclusions: The BETA circuit consistently produces significantly larger ablations than RFA. The treatment appears safe but positioning of the positive electrode of the direct current requires careful consideration. Injuries produced behave like other thermal therapies with coagulative necrosis followed by fibrotic healing. As larger ablations are consistently produced, it is hypothesised that with further refinements, tumours greater than 3 cm in diameter could be treated with lower rates of recurrence. / Thesis (M.S.) -- University of Adelaide, School of Medicine, 2008
2

Radiodažnuminės termoabliacijos veiksmingumas gydant knarkiančiuosius ir sergančius lengvu ir vidutinio sunkumo obstrukcinės miego apnėjos hipopnėjos sindromu / The efficiency of radiofrequency tissue ablation in the treatment of habitual snoring and mild to moderate obstructive sleep apnea hypopnea syndrome

Balsevičius, Tomas 01 April 2010 (has links)
Tyrimo metu apibendrinti ir išanalizuoti 74 knarkiančiųjų bei lengvu ir vidutinio sunkumo obstrukcinės miego apnėjos hipopnėjos sindromu (OMAHS) sergančių pacientų klinikiniai duomenys, ir įvertinta 38 jų miego partnerių emocinė būklė prieš pacientų gydymą ir praėjus 2–4 mėn. po pacientams taikyto knarkimo ir OMAHS gydymo – radiodažnuminės termoabliacijos (RDTA). Šio darbo uždaviniai: 1. Ištirti ir palyginti knarkiančiųjų bei sergančių lengvu ir vidutinio sunkumo OMAHS pacientų viršutinių kvėpavimo takų anatomines ir funkcines savybes, apnėjų hipopnėjų indeksą, nusiskundimus sveikata ir emocinę būklę. 2. Įvertinti knarkiančiųjų bei sergančių lengvu ir vidutinio sunkumo OMAHS pacientų gyvenimo kokybę prieš pradedant gydymą ir po gydymo RDTA. 3. Įvertinti su RDTA operacijomis susijusių pacientų nusiskundimų intensyvumą ir pooperacinių komplikacijų dažnį. 4. Ištirti ir įvertinti knarkiančiųjų bei sergančių lengvu ir vidutinio sun¬kumo OMAHS pacientų nusiskundimus ir apnėjų hipopnėjų indeksą po gydymo RDTA. 5. Ištirti ir įvertinti knarkiančiųjų bei sergančių lengvu ir vidutinio sunkumo OMAHS pacientų emocinę būklę po gydymo RDTA. 6. Ištirti ir įvertinti knarkiančiųjų bei sergančių lengvu ir vidutinio sunkumo OMAHS miego partnerių emocinę būklę ir jos pokyčius po pacientų gydymo RDTA. Po pacientų gydymo RDTA nustatytas pacientų nusiskundimų intensyvumo ir apnėjų hipopnėjų indekso sumažėjimas bei emocinės būklės pagerėjimas, ir pacientų miego part¬ne¬rių depresiškumo sumažėjimas... [toliau žr. visą tekstą] / A total of 74 snoring and mild to moderate obstructive sleep apnea hypopnea syndrome (OSAHS) patients underwent complete full night polysomnography (PSG) and clinical examination and were treated with two sessions of radiofrequency tissue ablation (RFTA). The emotional state of 38 bed partners of snoring and mild to moderate OSAHS patients were evaluated at the baseline and 2–4 months after the patients completed the treatment. Objectives of the study: 1. To examine and evaluate the relationship between complaints, anatomical features, PSG results, and emotional state of snoring and mild to moderate OSAHS patients. 2. To assess the quality of life among snoring and mild to moderate OSAHS patients before and after the RFTA treatment. 3. To analyze the morbidity and the rate of postoperative compli¬ca¬tions of RFTA. 4. To evaluate the influence of RFTA on the objective (PSG results) and subjective (complaints) outcomes in snoring and mild to moderate OSAHS patients. 5. To evaluate the influence of RFTA on the outcomes of anxiety and depression in snoring and mild to moderate OSAHS patients. 6. To examine the emotional state and to evaluate the effect of RFTA on anxiety and depression in bed partners of snoring and mild to moderate OSAHS patients. A remarkable improvement in patients’ complaints, PSG results and emotional state after RFTA was observed. RFTA therapy resulted in improved depression scores for the bed partners of snoring and mild to moderate OSAHS patients.
3

The future of radiofrequency ablation is looking BETA : short and long term studies of bimodal electric tissue ablation (BETA) in a porcine model.

Dobbins, Christopher January 2008 (has links)
Introduction: Radiofrequency ablation (RFA) is a popular method of treating unresectable liver tumours by the use of a high frequency, alternating electrical current that heats and destroys tumour cells. The size of the ablation is limited by localised charring of adjacent tissue that prevents further conduction of the radiofrequency current. In the clinical setting, this results in increased rates of local recurrence in tumours that are greater than 3 cm in diameter as multiple, overlapping ablations need to be performed to treat the one tumour. To overcome this problem, a modified form of RFA called Bimodal Electric Tissue Ablation (BETA) has been created. BETA adds a direct electrical current to the alternating radiofrequency current, thus establishing its bimodal character. When direct currents are used in biological tissues, water is transferred from anode to cathode by a process called electro-osmosis. By attaching the cathode to the radiofrequency electrode, water is attracted to the area thus preventing tissue desiccation and charring. The BETA circuit has been constructed and tested using a porcine model. The aims of the studies are to confirm that larger ablations can be produced with the BETA system and that it is safe to use in an animal model. Three studies have been performed to test these aims in porcine liver. Methods: The first study was designed to compare sizes of the ablation produced between standard RFA and the BETA circuit. This was followed by a long-term study to assess associated changes to liver function and pathological changes within the liver as well as identifying any other treatment related morbidity. The third study assessed the difference in ablation size and safety aspects when the positive electrode of the direct current circuitry was moved from small surface area under the skin to a large surface area on the skin. Results: Ablations with significantly larger diameters are created with the BETA circuit using a multi-tine needle (49.55 mm versus 27.78 mm, p<0.001). This finding was confirmed in the third experiment using a straight needle (25 mm versus 15.33 mm, p<0.001). Ablations produced by the BETA circuit induce coagulative necrosis within the treated liver and the injury heals by fibrosis in a manner similar to other thermal therapies. Significant rises in some serum liver enzymes are seen within 24 hours of treatment but these return to normal within 4 days. An electrolytic type injury can be produced at the site of the positive electrode. By increasing the surface area of this electrode, the risk of tissue damage is decreased but ablations are significantly smaller (18 mm versus 25 mm, p<0.001). Conclusions: The BETA circuit consistently produces significantly larger ablations than RFA. The treatment appears safe but positioning of the positive electrode of the direct current requires careful consideration. Injuries produced behave like other thermal therapies with coagulative necrosis followed by fibrotic healing. As larger ablations are consistently produced, it is hypothesised that with further refinements, tumours greater than 3 cm in diameter could be treated with lower rates of recurrence. / Thesis (M.S.) -- University of Adelaide, School of Medicine, 2008
4

Improvements in Pulse Parameter Selection for Electroporation-Based Therapies

Aycock, Kenneth N. 30 March 2023 (has links)
Irreversible electroporation (IRE) is a non-thermal tissue ablation modality in which electrical pulses are used to generate targeted disruption of cellular membranes. Clinically, IRE is administered by inserting one or more needles within or around a region of interest, then applying a series of short, high amplitude pulsed electric fields (PEFs). The treatment effect is dictated by the local field magnitude, which is quite high near the electrodes but dissipates exponentially. When cells are exposed to fields of sufficient strength, nanoscale "pores" form in the membrane, allowing ions and macromolecules to rapidly travel into and out of the cell. If enough pores are generated for a substantial amount of time, cell homeostasis is disrupted beyond recovery and cells eventually die. Due to this unique non-thermal mechanism, IRE generates targeted cell death without injury to extracellular proteins, preserving tissue integrity. Thus, IRE can be used to treat tumors precariously positioned near major vessels, ducts, and nerves. Since its introduction in the late 2000s, IRE has been used successfully to treat thousands of patients with focal, unresectable malignancies of the pancreas, prostate, liver, and kidney. It has also been used to decellularize tissue and is gaining attention as a cardiac ablation technique. Though IRE opened the door to treating previously inoperable tumors, it is not without limitation. One drawback of IRE is that pulse delivery results in intense muscle contractions, which can be painful for patients and causes electrodes to move during treatment. To prevent contractions in the clinic, patients must undergo general anesthesia and temporary pharmacological paralysis. To alleviate these concerns, high-frequency irreversible electroporation (H-FIRE) was introduced. H-FIRE improves upon IRE by substituting the long (~100 µs) monopolar pulses with bursts of short (~1 µs) bipolar pulses. These pulse waveforms substantially reduce the extent of muscle excitation and electrochemical effects. Within a burst, each pulse is separated from its neighboring pulses by a short delay, generally between 1 and 5 µs. Since its introduction, H-FIRE burst waveforms have generally been constructed simply by choosing the duration of constitutive pulses within the burst, with little attention given to this delay. This is quite reasonable, as it has been well documented that pulse duration plays a critical role in determining ablation size. In this dissertation, we explore the role of these latent periods within burst waveforms as well as their interaction with other pulse parameters. Our central hypothesis is that tuning the latent periods will allow for improved ablation size with reduced muscle contractions over traditional waveforms. After gaining a simple understanding of how pulse width and delay interact in vitro, we demonstrate theoretically that careful tuning of the delay within (interphase) and between (interpulse) bipolar pulses in a burst can substantially reduce nerve excitation. We then analyze how pulse duration, polarity, and delays affect the lethality of burst waveforms toward determining the most optimal parameters from a clinical perspective. Knowing that even the most ideal waveform will require slightly increased voltages over what is currently used clinically, we compare the clinical efficacy of two engineered thermal mitigation strategies to determine what probe design modifications will be needed to successfully translate H-FIRE to the clinic while maintaining large, non-thermal ablation volumes. Finally, we translate these findings in two studies. First, we demonstrate that burst waveforms with an improved delay structure allow for enhanced safety and larger ablation volumes in vivo. And finally, we examine the efficacy of H-FIRE in spontaneous canine liver tumors while also comparing the ablative effect of H-FIRE in tumor and non-neoplastic tissue in a veterinary clinical setting. / Doctor of Philosophy / Cancer is soon to become the most common cause of death in the United States. In 2023, approximately 2 million new cases of cancer will be diagnosed, leading to roughly 650 thousand lost lives. Interestingly, about half of newly diagnosed cancers are caught in the early stages before the disease has spread throughout the body. With effective local intervention, these patients could potentially be cured of their malignancy. Surgical removal of the tumor is the gold standard, but it is often not possible due to tumor location, patient comorbidities, or organ health status. In some instances, focal thermal ablation with radiofrequency or microwave energy can be performed when resection is not possible. These treatments entail the delivery of thermal energy through a needle electrode, which causes local tissue damage through coagulation (cooking) of the tissue. However, thermal ablation destroys tissue indiscriminately, meaning that any nearby blood vessels or neural components will also be damaged, which precludes thousands of patients from treatment each year. Irreversible electroporation (IRE) was introduced to overcome these challenges and provide a treatment option for patients diagnosed with otherwise untreatable tumors. IRE uses pulsed electric fields to generate nanoscale pores in cell membranes, which lead to a homeostatic imbalance and cell death. Because IRE is a membrane-based effect, it does not rely on thermal effects to generate cellular injury, which allows it to be administered to tumors that are adjacent to critical tissue structures such as major nerves and vasculature. Though IRE opened the door to treating otherwise inoperable tumors, procedures are technically challenging and require specialized anesthesia protocols. High-frequency irreversible electroporation (H-FIRE) was introduced by our group roughly a decade ago to simplify the procedure through the use of an alternate pulsing strategy. These higher frequency pulses offer several advantages such as limiting muscle contractions and reducing the risk of cardiac interference, both of which were concerns with IRE. However, H-FIRE ablations have been limited in size, and there is limited knowledge regarding the optimal pulsing strategy needed in order to maximize the ratio of therapeutic benefits to undesirable side effects like muscle stimulation and Joule heating. In this dissertation, we sought to understand how different pulse parameters affect these outcomes. Using a combination of computational, benchtop, and in vivo experiments, we comprehensively characterized the behavior of user-tunable pulse parameters and identified optimal methods for constructing H-FIRE protocols. We then translated our findings in a proof-of-principle study to demonstrate the ability of newly introduced waveform designs to increase ablation size with H-FIRE. Overall, this dissertation improves our understanding of how H-FIRE waveform selection affects clinical outcomes, introduces a new strategy for maximizing therapeutic outcomes with minimal side effects, and provides a framework for selecting parameters for specific applications.
5

Irreversible Electroporation Therapy for the Treatment of Spontaneous Tumors in Cancer Patients

Neal II, Robert Evans 04 January 2012 (has links)
Irreversible electroporation is a minimally invasive technique for the non-thermal destruction of cells in a targeted volume of tissue, using brief electric pulses, (~100 µs long) delivered through electrodes placed into or around the targeted region. These electric pulses destabilize the integrity of the cell membrane, resulting in the creation of nanoscale defects that increase a cell’s permeability to exchange with its environment. When the energy of the pulses is high enough, the cell cannot recover from these effects and dies in a non-thermal manner that does not damage neighboring structures, including the extracellular matrix. IRE has been shown to spare the major vasculature, myelin sheaths, and other supporting tissues, permitting its use in proximity to these vital structures. This technique has been proposed to be harnessed as an advantageous non-thermal focal ablation technique for diseased tissues, including tumors. IRE electric pulses may be delivered through small (ø ≈ 1 mm) needle electrodes, making treatments minimally invasive and easy to apply. There is sub-millimeter demarcation between treated and unaffected cells, which may be correlated with the electric field to which the tissue is exposed, enabling numerical predictions to facilitate treatment planning. Immediate changes in the cellular and tissue structure allow real-time monitoring of affected volumes with imaging techniques such as computed tomography, magnetic resonance imaging, electrical impedance tomography, or ultrasound. The ability to kill tumor cells has been shown to be independent of a functioning immune system, though an immune response seems to be promoted by the ablation. Treatments are unaltered by blood flow and the electric pulses may be administered quickly (~ 5 min). Recently, safety and case studies using IRE for tumor therapy in animal and human patients have shown promising results. Apart from these new studies, previous work with IRE has involved studies in healthy tissues and small cutaneous experimental tumors. As a result, there remain significant differences that must be considered when translating this ablation technique towards a successful and reliable therapeutic option for patients. The dissertation work presented here is designed to develop irreversible electroporation into a robust, clinically viable treatment modality for targeted regions of diseased tissue, with an emphasis on tumors. This includes examining and creating proving the efficacy for IRE therapy when presented with the many complexities that present themselves in real-world clinical patient therapies, including heterogeneous environments, large and irregular tumor geometries, and dynamic tissue properties resulting from treatment. The impact of these factors were theoretically tested using preliminary in vitro work and numerical modeling to determine the feasibility of IRE therapy in heterogeneous systems. The feasibility of use was validated in vivo with the successful treatment of human mammary carcinomas orthotopically implanted in the mammary fat pad of mice using a simple, single needle electrode design easily translatable to clinical environments. Following preliminary theoretical and experimental work, this dissertation considers the most effective and accurate treatment planning strategies for developing optimal therapeutic outcomes. It also experimentally characterizes the dynamic changes in tissue properties that result from the effects of IRE therapy using ex vivo porcine renal cortical tissue and incorporates these into a revised treatment planning model. The ability to use the developments from this earlier work is empirically tested in the treatment of a large sarcoma in a canine patient that was surgically unresectable due to its proximity to critical arteries and the sciatic nerve. The tumor was a large and irregular shape, located in a heterogeneous environment. Treatment planning was performed and the therapy carried out, ultimately resulting in the patient being in complete remission for 14 months at the time of composing this work. The work presented in this dissertation finishes by examining potential supplements to enhance IRE therapy, including the presence of an inherent tumor-specific patient immune response and the addition of adjuvant therapeutic modalities. / Ph. D.

Page generated in 0.0988 seconds