Spelling suggestions: "subject:": twodimensional crystal"" "subject:": twodimensional crystal""
1 |
Structural analysis of gastric H+,K+-ATPase at E1 state using carbon sandwich preparation in cryo-electron microscopy / カーボンサンドイッチ法を用いた胃プロトンポンプのE1状態での極低温電子顕微鏡による構造解析Yang, Fan 24 March 2014 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(理学) / 甲第18121号 / 理博第3999号 / 新制||理||1576(附属図書館) / 30979 / 京都大学大学院理学研究科生物科学専攻 / (主査)准教授 土井 知子, 教授 七田 芳則, 教授 高田 彰二 / 学位規則第4条第1項該当 / Doctor of Science / Kyoto University / DFAM
|
2 |
Optical Spectroscopy of Two-Dimensional Transition Metal Dichalcogenides (TMDCs)He, Keliang 21 February 2014 (has links)
No description available.
|
3 |
Phasing Two-Dimensional Crystal Diffraction Pattern with Iterative Projection AlgorithmsJanuary 2016 (has links)
abstract: Phase problem has been long-standing in x-ray diffractive imaging. It is originated from the fact that only the amplitude of the scattered wave can be recorded by the detector, losing the phase information. The measurement of amplitude alone is insufficient to solve the structure. Therefore, phase retrieval is essential to structure determination with X-ray diffractive imaging. So far, many experimental as well as algorithmic approaches have been developed to address the phase problem. The experimental phasing methods, such as MAD, SAD etc, exploit the phase relation in vector space. They usually demand a lot of efforts to prepare the samples and require much more data. On the other hand, iterative phasing algorithms make use of the prior knowledge and various constraints in real and reciprocal space. In this thesis, new approaches to the problem of direct digital phasing of X-ray diffraction patterns from two-dimensional organic crystals were presented. The phase problem for Bragg diffraction from two-dimensional (2D) crystalline monolayer in transmission may be solved by imposing a compact support that sets the density to zero outside the monolayer. By iterating between the measured stucture factor magnitudes along reciprocal space rods (starting with random phases) and a density of the correct sign, the complex scattered amplitudes may be found (J. Struct Biol 144, 209 (2003)). However this one-dimensional support function fails to link the rod phases correctly unless a low-resolution real-space map is also available. Minimum prior information required for successful three-dimensional (3D) structure retrieval from a 2D crystal XFEL diffraction dataset were investigated, when using the HIO algorithm. This method provides an alternative way to phase 2D crystal dataset, with less dependence on the high quality model used in the molecular replacement method. / Dissertation/Thesis / Doctoral Dissertation Physics 2016
|
4 |
Rupture et fusion d'un cristal bidimensionnelPauchard, Ludovic 28 February 1997 (has links) (PDF)
Le systeme bidimensionnel etudié dans cette thèse est un film de Langmuir, film constitué d'une unique couche de molécules amphiphiles à l'interface eau-air. Une transition du premier ordre, observée dans une monocouche d'acide NBD-stéarique révèle la coexistence entre une phase cristalline et une phase liquide. Les domaines monocristallins se présentent sous la forme de longs bâtonnets, parfaitement adaptés aux études mécaniques. Nous étudions certaines propriétés de ce cristal bidimensionnel. La première étude concerne la rupture de ce solide bidimensionnel. Un cristal maintenu fléchi dans le plan de l'eau se rompt après une durée bien déterminée. Cette durée s'est avérée être fonction de la déformation appliquée au cristal. A fortescontraintes, on second mode de rupture coexiste : un certains nombre de cristaux cassent intantanément tandis que d'autres présentent une rupture différée. La seconde étude s'intéresse à la fusion des cristaux en équilibre avec leur phase liquide. La fusion peut être provoquée par trois processus distincts : deux processus thermodynamiques (réchauffement et décompression) et un processus photochimique. Ce dernier s'est avéré dû à une réaction photochimique réversible avec l'oxygène de l'air, conduisant a l'abaissement du point de fusion du cristal. Les trois processus de fusion conduisent à des observations similaires, indiquant ainsi l'existence d'un mécanisme commun dans l'initiation de la fusion. Les observation montrent que l'intérieur du crystal fond bien avant ses bords. De plus, la fusion d'un cristal maintenu déformé a lieu le long d'une ligne ou la contrainte s'annule. Nous suggérons que le mécanisme responsable de ce phénomène est la migration de défauts, probablement des dislocations, à l'endoit du cristal non déformé.; Ces défauts jouant le rôle de centres de nucléation de la fusion. Ces résultats montrent le rôle primordial des défauts dans la fusion à deux dimension.
|
5 |
Large Area MoS2 : Growth and Device CharacteristicsKumar, V Kranthi January 2016 (has links) (PDF)
There has been growing interest in two-dimensional (2-D) crystals beyond graphene for next-generation nano-electronics. Transition metal dichalcogenides have been most widely studied, for their semiconducting characteristics and hence, potential applications. This interest has fueled many efforts to establish methods for synthesis of MoS2 layers, a most promising candidate, in controlled numbers over large areas. One of the most scalable methods is chemical vapor deposition (CVD). The current approaches to growth from the vapor phase are by and large very empirical. This thesis is hence concerned with the predictive synthesis of n-layered MoS2 using CVD uniformly over large areas and the correlation of growth parameters with the structural and electronic properties of the deposited films.
A simple, relatively non-toxic and non-pyrophoric chemistry, consisting of Mo(CO)6 and H2S was first chosen for vapor phase synthesis. This chemistry allowed synthesis of MoS2 from precursors located outside of the growth reactor, a necessary condition for electronics device technology. Iterative thermodynamic modeling of the Mo-S-C-O-H system and growth was then done to identify the appropriate CVD process windows for the growth of pure MoS2, departures from stoichiometry, contamination and breakdown of equilibrium modelling. Remarkable agreement between theoretical modelling and actual growth has been observed leading to predictable deposition.
Within these thermodynamic windows, the gas phase supersaturation were then reduced to obtain better kinetic control over crystal growth. It is shown that control of supersaturation at the very initial stages of growth is critical to reduce the nucleation density and hence obtain monolayers with small defect densities. In addition, it is shown that at higher temperatures the kinetics of nucleation and growth are determined by the supersaturation on the growth surface. Physico-chemical modelling reveals that this steady state supersaturation is determined by the kinetics of adsorption and desorption. All of this understanding has been used to realize a variety of structures from discrete crystalline islands- 30 nm to 150 microns- to deposits with controlled number of layers – n =1 to 6 or greater- uniformly over large areas on quartz and sapphire.
Gas phase chemistry also affects the electrical characteristics of the as deposited layers. It is shown, for the first time, that by changing gas phase Mo to S ratios the stoichiometry of the deposited layers MoS2 can be made metal or chalcogen deficient. This yields MoS2 that can be either p-type or n-type. p-type and n-type MoS2 with mobilities up to 7.4 cm2/Vs and 40 cm2/Vs respectively are demonstrated. FETs fabricated on MoS(2-x) samples (increasing x) with varying stoichiometry showed a maximum on-current of 18 μA (4.5 μA/μm) in vacuum and 0.6 μA (0.15 μA/μm) in air for a drain bias Vds = 1 V. Sulphur deficiency also affect reliability. While samples with a higher concentration of sulphur vacancies have higher mobility in vacuum, the mobility degrades significantly in air and gets reversed on annealing in H2S.
The details of such correlation between growth and electrical characteristics are discussed in this thesis.
|
Page generated in 0.0922 seconds