• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2233
  • 507
  • 321
  • 246
  • 78
  • 75
  • 59
  • 41
  • 30
  • 30
  • 30
  • 30
  • 30
  • 30
  • 29
  • Tagged with
  • 4522
  • 1308
  • 694
  • 561
  • 472
  • 465
  • 459
  • 422
  • 354
  • 344
  • 299
  • 296
  • 295
  • 293
  • 291
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
351

A one-dimensional time-dependent air-water boundary layer model.

Walmsley, John L., 1943- January 1972 (has links)
No description available.
352

in :: out

Street, Elyssa 23 July 2007 (has links)
Our built environment is frequently in opposition with nature, therefore how man reacts with his surroundings can also shape them. The residential project began with the horizontal lines of the rock formations located throughout the site, and through utilization of the characteristics of the five elements of Feng Shui, innumerous decisions were made concerning orientation, material, and sense of place; allowing one to experience a sense of change yet maintaining a balance between the inside and out. The four primary walls become the vertical elements set in opposition to the horizontal lines of the site. / Master of Architecture
353

Parabolic boundary value problems with rough coefficients

Dyer, Luke Oliver January 2018 (has links)
This thesis is motivated by some of the recent results of the solvability of elliptic PDE in Lipschitz domains and the relationships between the solvability of different boundary value problems. The parabolic setting has received less attention, in part due to the time irreversibility of the equation and difficulties in defining the appropriate analogous time-varying domain. Here we study the solvability of boundary value problems for second order linear parabolic PDE in time-varying domains, prove two main results and clarify the literature on time-varying domains. The first result shows a relationship between the regularity and Dirichlet boundary value problems for parabolic equations of the form Lu = div(A∇u)−ut = 0 in Lip(1, 1/2) time-varying cylinders, where the coefficient matrix A = [aij(X, t)] is uniformly elliptic and bounded. We show that if the Regularity problem (R)p for the equation Lu = 0 is solvable for some 1 < p < then the Dirichlet problem (D*) 1 p, for the adjoint equation L*v = 0 is also solvable, where p' = p/(p − 1). This result is analogous to the one established in the elliptic case. In the second result we prove the solvability of the parabolic Lp Dirichlet boundary value problem for 1 < p ≤ ∞ for a PDE of the form ut = div(A∇u)+B ·∇u on time-varying domains where the coefficients A = [aij(X, t)] and B = [bi(X, t)] satisfy a small Carleson condition. This result brings the state of affairs in the parabolic setting up to the current elliptic standard. Furthermore, we establish that if the coefficients of the operator A and B satisfy a vanishing Carleson condition, and the time-varying domain is of VMO-type then the parabolic Lp Dirichlet boundary value problem is solvable for all 1 < p ≤ ∞. This is related to elliptic results where the normal of the boundary of the domain is in VMO or near VMO implies the invertibility of certain boundary operators in Lp for all 1 < p < ∞. This then (using the method of layer potentials) implies solvability of the Lp boundary value problem in the same range for certain elliptic PDE. We do not use the method of layer potentials, since the coefficients we consider are too rough to use this technique but remarkably we recover Lp solvability in the full range of p's as the elliptic case. Moreover, to achieve this result we give new equivalent and localisable definitions of the appropriate time-varying domains.
354

Instability and Transition on a Sliced Cone with a Finite-Span Compression Ramp at Mach 6

Gregory R McKiernan (8793053) 04 May 2020 (has links)
<div>Initial experiments on separated shock/boundary-layer interactions were carried out within the Boeing/AFOSR Mach-6 Quiet Tunnel. Measurements were made of hypersonic laminar-turbulent transition within the separation above a compression corner. This wind tunnel features freestream fluctuations that are similar to those in</div><div>flight. The present work focuses on the role of traveling instabilities within the shear layer above the separation bubble.</div><div>A 7 degree half-angle cone with a slice and a finite-span compression ramp was designed and tested. Due to a lack of space for post-reattachment sensors, early designs of this</div><div>generic geometry did not allow for measurement of a post-reattachment boundary layer. Oil flow and heat transfer measurements showed that by lengthening the ramp, the post-reattachment boundary layer could be measured. A parametric study was completed to determine that a 20 degree ramp angle caused reattachment at 45% of the</div><div>total ramp length and provided the best flow field for boundary-layer transition measurements.</div><div>Surface pressure fluctuation measurements showed post-reattachment wave packets and turbulent spots. The presence of wave packets suggests that a shear-layer</div><div>instability might be present. Pressure fluctuation magnitudes showed a consistent transition Reynolds numbers of 900000, based on freestream conditions and distance</div><div>from the nosetip. Pressure fluctuations grew exponentially from less than 1% to roughly 10% of tangent-wedge surface pressure during transition.</div><div>A high-voltage pulsed plasma perturber was used to introduce controlled disturbances into the boundary layer. The concept was demonstrated on a straight 7 degree half-angle circular cone. The perturbations successfully excited the second-mode instability at naturally unstable frequencies. The maximum second-mode amplitudes prior to transition were measured to be about 10% of the mean surface static pressure. </div><div>The plasma perturber was then used to disturb the boundary layer just upstream of the separation bubble on the cone with the slice and ramp. A traveling instability was measured post-reattachment but the transition location did not change for any tested condition. It appears that the excited shear-layer instability was not the dominant mechanism of transition.</div>
355

Effect of Favourable Pressure Gradient on Turbulence in Boundary Layers

Patwardhan, Saurabh Sudhir January 2015 (has links) (PDF)
This thesis explores the effects of favourable pressure gradient on the structure of turbulent boundary layers (TBL). In this context, the structure of three types of boundary layers namely a zero-pressure-gradient boundary layer, equilibrium boundary layers under favourable pressure gradient and relaminarising boundary layers is investigated mostly from the point of view of large-scale dynamics. This covers a whole range of flows on the so-called Reynolds number - pressure gradient diagram - from turbulent zero pressure gradient flows to relaminarising flows at relatively low Reynolds numbers. The study of turbulent and relaminarising boundary layers is carried out primarily using direct numerical analyses and some limited experiments in this thesis. The direct numerical simulations (DNS) of a zero-pressure-gradient turbulent boundary layer (ZPG TBL) is validated against the experimental and DNS data available in the literature. Furthermore, the important question of time-averaged signature of a large scale vortex structure and its relation with the two-point correlations in the context of ZPG TBL is addressed. In this context, a synthetic flow consisting of hairpin vortex structures is generated. The two-point correlations in the synthetic TBL and a real TBL are found to be qualitatively similar. This shows that the vortex structure leaves a time-averaged footprint in the form of correlations of velocity and vorticity. A study of two-point correlations in a real TBL shows that the structure angle deduced from two-point correlations varies with wall-normal location. The structure angle is small near the wall and increases away from the wall in agreement with the previous studies. The small angle close to the wall signifies the presence of streamwise structure. Away from the wall, this streamwise coherence is lost and the correlation contours become more isotropic. The presence of the wall and the mean shear affects smaller scales making them anisotropic close to the wall. Towards the edge of the boundary layer, smaller scales tend to become isotropic leading to -5/3 law in the energy spectrum. Further, a relation between a passive scalar in a flow and vorticity is explored. It is found that the scalar product of vorticity and scalar gradient is conserved in a non-diffusive situation. This assertion is demonstrated under various flow conditions. Despite the differences in Schmidt numbers, the structures observed in the outer layer are similar in both numerical and experimental flow visualisations. Further, the equilibrium turbulent boundary layers under favourable pressure gradient are studied. The numerical simulations of equilibrium sink flow TBL are validated against the experimental results of Dixit (2010). A study of two-point correlations reveals that the near-wall structure angle decreases with a favourable pressure gradient in sink flow TBLs. In the outer region, the loss of streamwise coherence occurs at a wall-normal location closer to the wall than in an ZPG TBL. Edge intermittency study reveals that the flow is non-turbulent beyond y/δ = 0.8 inside the mean boundary layer edge. The variation of the ratio of pressure gradient to Reynolds shear stress gradient shows that this ratio is very large (> 50) beyond y/δ = 0.8. The dominance of pressure gradient makes this part of sink flow TBL to behave like a Euler-region. Small scales in sink flow TBL tend to be isotropic near the edge of the boundary layer and spectra shows -5/3 law akin to ZPG TBL, albeit at lower Reynolds numbers. The concept of equilibrium is extended to flows with wall transpiration. The sink flow TBL is a special case of more generalised equilibrium TBLs with wall transpiration. Conditions required for the flow with wall transpiration are derived. It is observed that there is a systematic variation of various statistical properties with wall velocity. Further, it is observed that the motion in these equilibrium flows is purely active like in sink flow TBL. In equilibrium TBL, the Reynolds shear stress is directly related to mean velocity. So we have at our disposal an exact relation between the Reynolds shear stress and the mean velocity gradient without the need to do any ad-hoc modelling for the sink flow. This is an interesting observation from the point of view of modelling TBLs using eddy-viscosity. Eddy-viscosity model derived from sink flow TBL data is found to predict the mean velocity profiles in flows with wall transpiration with a sufficient accuracy. Similarly, it is plausible that any general non-equilibrium flow may be treated as a departure from equilibrium. With suitable modifications, eddy viscosity obtained from equilibrium TBL may be used to model them without invoking ad-hoc assumptions. Finally, the effect of initial Reynolds number on the process of relaminarisation is studied numerically and experimentally. ZPG TBLs with two different initial Reynolds number are subjected to different degrees of acceleration. However, the pressure gradient history is same in both the cases. It is observed that the flow with a higher initial Reynolds number relaminarises at a lower pressure gradient value than the flow with a lower initial Reynolds number. Assessment of different parameter criteria reveals that the criterion proposed by Narasimha & Sreenivasan (1973) is appropriate for the prediction of the onset of relaminarisation. Further, the structures in relaminarising flows are studied. The near-wall structure angle is found to decrease with the increasing FPG and the streamwise length of the structure also increases. The low and high speed streaks in the near-wall region are found to become longer and less undulating with an increase in the spanwise spacing. A stabilisation mechanism of near-wall streaks is also presented which suggests that the kinematic effect of mean vertical velocity directed towards the wall is responsible for the stabilisation of streaks.
356

Structure Of Sink Flow Boundary Layers

Ajit, Dixit Shivsai 10 1900 (has links)
The work reported in this thesis is an experimental and theoretical investigation of the so-called sink flow boundary layers. These are two-dimensional (in the mean), favourable-pressure-gradient (FPG) boundary layer flows where the boundary layers experience stream-wise acceleration inside a two-dimensional convergent channel with smooth and plane walls. The boundary layers studied are mainly turbulent with few cases that may be identified as reverse-transitional. The sink flow turbulent boundary layers (TBLs) are the only smooth-walled layers that are in ‘perfect equilibrium’ or ‘exact self-preservation’ in the sense of Townsend (1976) and Rotta (1962). The present boundary layer experiments were conducted in an open-return low-speed wind tunnel. The sink flow conditions were established on the test-plate by using a contoured test-section ceiling for creating a convergent channel with smooth and plane walls. The strength of the streamwise FPG was varied by changing the freestream speed in the test-section. Few zero-pressure-gradient (ZPG) turbulent boundary layers were also measured in the same tunnel for which the contoured ceiling was replaced by a straight one. The velocity measurement techniques used include conventional Pitot-tubes for mean flow measurements and hotwire/crosswire probes for turbulence measurements. For measurement of skin friction in ZPG flows, Preston-tube was used while for the sink flows the so-called surface hotwire method was employed. Static pressures were measured on the test-surface using an alcohol-based projection manometer. Boundary layers were tripped at the beginning of the test-plate to ensure quick transition to turbulence. The mean velocity scaling in sink flow TBLs in the presence of strong FPG has been studied systematically, especially in view of the apparent pressure-gradient-dependence of the logarithmic laws reported in the literature (Spalart & Leonard, 1986; Nickels, 2004; Chauhan et al., 2007). The experimental study of sink flow TBLs carried out over a wide range of streamwise FPGs has shown that the mean velocity profiles (in inner coordinates) exhibit systematic departures from the universal logarithmic law as the pressure gradient parameter ∆p is varied. Even so, each of these profiles exhibits a logarithmic region, albeit non-universal, whose constants are functions of the pressure gradient. Systematic dependence of these constants on the pressure gradient parameter ∆p is observed. Moreover, the wake region is uniformly absent in all these profiles. In other words, each profile looks like a ‘pure wall-flow’, in the sense of Coles (1957), only if it is viewed in relation to its own non-universal logarithmic law. To support the experimental observation of the pressure-gradient-dependence of logarithmic laws in sink flow TBLs, a theory based on the method of matched asymptotic expansions has been applied to sink flow TBLs and this theory reveals a systematic dependence of inner and outer logarithmic laws on the pressure gradient parameter ∆p. This dependence is essentially a higher-order effect and therefore becomes significant only in the presence of relatively strong pressure gradients. Comparison of the theory with the experimental data demonstrates that the disappearance of the universal logarithmic law in strong FPG situations does not necessarily imply the absence of classical inner-outer overlap region. The overlap may still manifest itself as a logarithmic functional form with constants that are strongly influenced by the magnitude of the FPG. An immediate use of the non-universal log laws is towards the estimation skin friction in strong-pressure-gradient equilibrium and near-equilibrium TBL flows and this issue has been studied in some detail. It is shown that the conventional Clauser-chart method for estimation of skin friction (which gives fairly accurate results for ZPG or mild-pressure-gradient flows), originally proposed by Clauser (1954), can be modified to deal with the situations involving strong streamwise pressure gradients, provided that the equilibrium or near-equilibrium TBL under consideration is not very close to relaminarization or separation. In such cases, the overlap layer manifests itself in the form of non-universal logarithmic laws that are dependent on the local strength of the pressure gradient. Using these non-universal log laws in conjunction with the measured pressure distribution (necessary for obtaining the acceleration parameter K) and a measured mean velocity profile, it is possible to obtain the local skin friction coefficient to an accuracy which is typical of skin friction measurements. This modified Clauser-chart method (MCCM) employs a two-fold iterative procedure (one iteration on Cf and the other on ∆p) in contrast to the conventional method that involves only one iteration (on Cf alone). As a by-product of this MCCM, one obtains the local pressure gradient parameter ∆p and the slope 1/κ and intercept C of the non-universal log law for that profile. It is also demonstrated that the arm´MCCM is quite robust to the changes in the universal values of K´arman constant κ0 and intercept C0 for the ZPG turbulent boundary layer. Various aspects of the large-scale structure in turbulent and reverse-transitional sink flow boundary layers subjected to streamwise FPGs have also been investigated. The use of sink flow configuration allows systematic characterization of the large-scale structure with the strength of the FPG as a parameter where the characterization is not contaminated by the upstream history effects. The large-scale structure is identified by cross-correlating the wall-shear stress fluctuation with the streamwise velocity fluctuation. The structure orientation is found to be linear over a large wall-normal extent typically extending from y/δ of 0.1 to 0.6. Beyond y/δ =0.6, the correlation under consideration becomes very weak to allow any conclusive results. The average structure inclination angle αavg is found to decrease systematically with increase in the streamwise FPG. This result is important and has implications towards modeling of the near-wall region. Further it is found that the structure gets elongated considerably as the FPG is increased, i.e. the streamwise spatial extent of the structure increases. Taken together, it is observed that the structure becomes flatter and longer with the increase in FPG. Structural models are proposed for sink flow TBLs in the form of either the shape of individual hairpin vortices or the possible structural self-organization. These models are then discussed in the light of present experimental results. It is also shown that the process of relaminarization of a TBL by strong FPG may be better appreciated by appealing to these structural models. The validity of Taylor’s hypothesis for structure angle measurements in the present study has been established experimentally. This exercise is important since the flows under consideration are highly accelerated and sometimes even reverse-transitional. In most of the previous work on the validity of Taylor’s hypothesis, at least for the measurements similar to the present work, the emphasis has been on ZPG turbulent boundary layers. The present exercise is therefore crucial for accelerating flows. Possible reasons for the observed validity of Taylor’s hypothesis have also been identified − specifically it is seen that the condition ∆xp/L << 1 needs to be met for Taylor’s hypothesis to be valid in pressure gradient flows. Investigation of the structure convection velocity from the space-time correlations has revealed that the convection velocity of a typical structure in the present sink flow boundary layers is almost equal to the local mean velocity (more than 90%). This implies that the structure gets convected downstream almost along with the mean flow. Near-wall ‘active’ and ‘inactive’ motions in sink flow TBLs have been studied, discussed and compared with the corresponding results for ZPG turbulent boundary layers from five different aspects: (i) turbulent diffusion of TKE, (ii) quadrant statistics, (iii) profiles of the streamwise turbulence intensity, (iv) event correlation length scales obtained from conditional sampling on the instantaneous flux signal and (v) profiles of the Townsend parameter Tp =(−uv) /u2. Near-wall inactive motion is seen to be related to the strength of the large-eddy structure in the outer region of TBL flow. For APG flows the near-wall inactive motion is known to be more intense (Bradshaw, 1967b) than the ZPG flows, say at the same K´arman number δ+. This observation is consistent with a stronger large-eddy structure that may be perceived from the stronger wake component in the mean velocity variation and the larger mean entrainment in an APG turbulent boundary layer as compared to the ZPG flow at same δ+. In sink flow TBLs, the large-eddy structure is much weaker in comparison to the ZPG flow at same δ+ which is consistent with the absence of wake component in the mean velocity profile as well as the zero mean entrainment into the layer. A sink flow TBL represents, a state of weakest large-eddy structure and hence minimum intensity of inactive motion compared to any other equilibrium or near-equilibrium TBL flow having the same K´arman number δ+. All the analysis of the relevant experimental data seems to support this.
357

Fast Symbolic Boundary Approximation Method

Wu, Tung-Yen 22 July 2004 (has links)
Boundary Approximation Method (BAM), or the Collocation Trefftz Method called in the literature, is the most efficient method to solve elliptic boundary value problems with singularities. There are several versions of BAM in practical computation, including the Numerical BAM, Symbolic BAM and their variants. It is known that the Symbolic BAM is much slower than Numerical counterpart. In this thesis, we improve the Symbolic BAM to become the fastest method among all versions of BAM. We prove several important lemmas to reduce the computing time, and a recursive procedure is found to expedite the evaluation of major integrals. Another drawback of the Symbolic BAM is its large condition number. We find a good and easy preconditioner to significantly reduce the condition number. The numerical experiments and comparison are also provided for the Motz problem, a prototype of Laplace boundary value problem with singularity, and the Schiff's Model, a prototype of biharmonic boundary value problem with singularity.
358

Steady States and Stability of the Bistable Reaction-Diffusion Equation on Bounded Intervals

Couture, Chad January 2018 (has links)
Reaction-diffusion equations have been used to study various phenomena across different fields. These equations can be posed on the whole real line, or on a subinterval, depending on the situation being studied. For finite intervals, we also impose diverse boundary conditions on the system. In the present thesis, we solely focus on the bistable reaction-diffusion equation while working on a bounded interval of the form $[0,L]$ ($L>0$). Furthermore, we consider both mixed and no-flux boundary conditions, where we extend the former to Dirichlet boundary conditions once our analysis of that system is complete. We first use phase-plane analysis to set up our initial investigation of both systems. This gives us an integral describing the transit time of orbits within the phase-plane. This allows us to determine the bifurcation diagram of both systems. We then transform the integral to ease numerical calculations. Finally, we determine the stability of the steady states of each system.
359

Ultrasonic welding of aluminium to titanium : microstructure, properties, and alloying effects

Zhang, Chaoqun January 2015 (has links)
Use of welded titanium alloy to aluminium alloy structures in the aerospace industry has a number of potential benefits for both cost and weight saving by enabling titanium to be used only in the most critical parts, with the cheaper and lighter aluminum alloy making up the rest of the structure. However, due to the formation of brittle intermetallic compounds (IMC) at interface and the enormous gap in melting point, the welding of titanium to aluminium remains a major challenge. Solid state welding processes are most likely to be successful since they do not involve any melting, and so issues associated with the large difference in melting point and the high reaction rate of the liquid phase are avoided. In this study, an emerging low energy input solid state welding process - high-power ultrasonic spot welding (USW) was applied to weld Al and Ti (AA6111-T4/Ti6Al4V and AA2139-T8/Ti6Al4V combinations). No obvious intermetallic reaction layer was observed on the Al/Ti interface even using transmission electron microscopy. As a result, the maximum joint strength measured reached the same level as similar Al-Al (AA6111) welds and greatly exceeded those observed in Al-Fe and Al-Mg joints made using the same technique, in which a brittle reaction layer forms rapidly. However, the Al/Ti welds always failed at the weld interface after natural ageing, which is not desirable due to the low fracture energy associated with interfacial fracture mode. By using high resolution STEM-EDS, residual oxides and Si segregation were detected on the as-welded Al/Ti interface, which are thought to be factors that result in the no reaction layer Al/Ti interface. The Si segregation is predicted to be able to increase the weld interface cohesion through thermodynamic calculation. A series of prolonged heat treatment experiments were performed to understand the Al-Ti reaction layer growth kinetics and to explain the lack of reaction layer in as-welded Al-Ti joint. Al3Ti (D022 structure) was the only Al-Ti intermetallic phase observed in the reaction layer (IMC layer). In pure Al/Ti joints, it is found that the very long slow-growth stage of IMC layer is probably caused by the residual oxides on the interface. Calculations show that grain boundary (GB) diffusion makes the major contribution to the effective diffusion coefficient in the Al3Ti layer. In AA2139/Ti joints, the IMC layer growth is significantly slower than that in pure Al/Ti joints. The effects of alloying elements on the IMC layer growth was studied in detail. Cu was observed to segregate on both the Al3Ti grain boundaries and the Al3Ti/Ti interface. Si also segregated on the the Al3Ti/Ti interface and enriched in the Al3Ti layer. Both Cu and Si are thought to retard IMC layer growth. Interestingly small patches of Al were found trapped in the IMC layer; its formation mechanism is discussed. In pure Al/Ti6Al4V joints, the IMC layer growth rate did not change significantly. The presence of V greatly retarded the Al3Ti grain growth at high annealing temperature (630 °C) and suppressed the anisotropic growth of Al3Ti at 600 °C. Overall this study successfully joined Al/Ti by USW and systematically investigated the grain size effect and alloying effects on the Al3Ti layer growth. The present study for the first time: (a) observed the no-IMC-layer Al/Ti weld interface; (b) observed Cu segeration on Al3Ti GBs; (c) quantitatively studied the grain size effect on Al3Ti layer growth kinetics; (d) observed the orientation relationship between trapped Al islands and the adjacent Al3Ti grains; (e) observed that V greatly retarded the anisotropic growth of Al3Ti grains.
360

Non-homogeneous Boundary Value Problems of a Class of Fifth Order Korteweg-de Vries Equation posed on a Finite Interval

Sriskandasingam, Mayuran 04 October 2021 (has links)
No description available.

Page generated in 0.0403 seconds