• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 454
  • 96
  • 70
  • 59
  • 43
  • 13
  • 9
  • 9
  • 9
  • 7
  • 6
  • 4
  • 3
  • 3
  • 3
  • Tagged with
  • 968
  • 231
  • 224
  • 209
  • 140
  • 110
  • 105
  • 92
  • 79
  • 75
  • 73
  • 73
  • 72
  • 71
  • 71
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
331

Towards A Mobile Damping Robot For Vibration Reduction of Power Lines

Kakou, Paul-Camille 18 May 2021 (has links)
As power demand across communities increases, focus has been given to the maintenance of power lines against harsh environments such as wind-induced vibration (WIV). Currently, Inspection robots are used for maintenance efforts while fixed tuned mass dampers (FTMDs) are used to prevent structural damages. However, both solutions are facing many challenges. Inspection robots are limited by their size and considerable power demand, while FTMDs are narrowband and unable to adapt to changing wind characteristics, and thus are unable to reposition themselves at the antinodes of the vibrating loop. In view of these shortcomings, we propose a mobile damping robot (MDR) that integrates inspection robots' mobility and FTMDs WIV vibration control to help maintain power lines. In this effort, we model the conductor and the MDR by using Hamilton's principle and we consider the two-way nonlinear interaction between the MDR and the cable. The MDR is driven by a Proportional-Derivative controller to the optimal vibration location (i.e, antinodes) as the wind characteristics vary. The numerical simulations suggest that the MDR outperforms FTMDs for vibration mitigation. Furthermore, the key parameters that influence the performance of the MDR are identified through a parametric study. The findings could set up a platform to design a prototype and experimentally evaluate the performance of the MDR. / Master of Science / Power lines are civil structures that span more than 160000 miles across the United States. They help electrify businesses, factories and homes. However, power lines are subject to harsh environments with strong winds, which can cause Aeolian vibration. Vibration in this context corresponds to the oscillation of power lines in response to the wind. Aeolian vibration can cause significant structural damages that impact public safety and result in a significant economic loss. Today, different solutions have been explored to limit the damages to these key structures. For example, the lines are commonly inspected by foot patrol, helicopters, or inspection robots. These inspection techniques are labor intensive and expensive. Furthermore, Stockbridge dampers, mechanical vibration devices, can be used to reduce the vibration of the power line. However, Stockbridge dampers can get stuck at location called nodes, where they have zero efficiency. To tackle this issue, we propose a mobile damping robot that can re-adjust itself to points of maximum vibration to maximize vibration reduction. In this thesis, we explore the potential of this proposed solution and draw some conclusions of the numerical simulations.
332

Modeling and Synthesis of a Piezoelectric Ceramic-Reinforced Metal Matrix Composite

Goff, Adam Carter 20 June 2003 (has links)
A mathematical model has been created based on J.D. Eshelby's equivalent inclusion method that can predict the elastic modulus and damping capability in the form of Joule heat for any piezoelectric ceramic-reinforced metal matrix composite system. Specifically, barium titanate (BaTiO₃), lead titanate (PbTiO₃), and zinc oxide (ZnO) piezoelectric ceramics have been modeled as dispersed particles shaped as spheres, prolate spheroids, and discs within a host of common structural metallic matrices including 304 stainless steel, mild steel, aluminum, brass, copper, lead, magnesium, nickel, Ni-20wt%Cr, tin, titanium, Ti-6Al-4V(at%), and tungsten. Composite systems that were predicted to exhibit the greatest level of damping capacity include copper, aluminum, and magnesium matrices reinforced with PbTiO₃, BaTiO₃, and ZnO, in descending order of damping magnitude. In general, higher-conducting, lower-stiffness metallic matrices coupled with more-piezoelectric, higher-stiffness ceramic reinforcement resulted in the greatest level of predicted damping capability and enhanced composite elastic modulus. Additionally, a Ni-20wt%Cr-30v%BaTiO₃ composite has been created using mechanical alloying processing. Specifically, pure constituent powders were combined stoichiometrically in a SPEX milling vial utilizing a charge ratio of 4:1 and subsequently milled for 24 hours. Separate composite powder samples were then annealed in a hydrogen tube furnace at 400°C, 500°C, and 600°C for one and five hours at each temperature. X-ray diffraction was performed on the as-milled and the annealed powders revealing that each was composed of the starting constituents in the appropriate proportions. Representative powders were mounted and polished using common metallographic procedures and microstructures were examined by optical microscopy, scanning electron microscopy, and transmission electron microscopy. All of the powders exhibited a good dispersion of BaTiO₃ particles ranging in diameter from 1μm to about 25nm with no noticeable difference between the as-milled and the annealed powders. / Master of Science
333

Mechanical Properties of Maturing Dystrophic Skeletal Muscle

Wolff, Andrew 04 June 2007 (has links)
The main goal for my research was to challenge the long held belief that the mechanical properties of maturing dystrophic compared to control skeletal muscle membranes are weaker, leading to onset of Duchenne muscular dystrophy (DMD). We built on a previous report from our lab that suggested sarcolemmal membranes from dystrophic mice are not more susceptible to damage early in maturation (i.e., age 9-12 days) and determined if and when muscle mechanical properties change as the mice mature. Across four studies, I have helped define the role of dystrophin-deficient skeletal muscle membranes in the onset of DMD. A linear viscoelastic muscle model was used to determine passive stiffness and damping in control and dystrophic muscles from maturing mice aged 14-35 days. Results confirmed my hypothesis that there are no differences in passive mechanical properties between normal and dystrophic mice. Recognizing the limitations of the linear model, a nonlinear model was developed to determine the stiffness and damping of active and passive dystrophic muscles from maturing mice aged 21 and 35 days. The nonlinear model achieved a significantly better fit to experimental data than the linear model when muscles were stretched to 15% strain beyond resting length. Active and passive mechanical properties of dystrophic mice were not different than control at 14 and 28 days of age. The previously developed nonlinear model was used to determine a more complete time-course (14-100 days of age) of dystrophic muscle mechanical properties. There was no difference in passive stiffness between mdx and control muscles at each age. However, the mdx:utrn-/- muscles showed increased stiffness compared to control and mdx muscles at 21 and 28 days, suggesting a temporary change within the muscle that only occurs with a lack of both utrophin and dystrophin. Fast-twitch and slow-twitch muscle mechanical properties were compared in control and dystrophic mice aged 3, 5, and 9 weeks of age. Dystrophic and control slow-twitch muscles did not have different mechanical properties, suggesting that a lack of dystrophin does not affect slow-twitch muscles during maturation (3-5 weeks) or well after maturation (9 weeks). / Ph. D.
334

The effects of embedded piezoelectric layers in composite cylinders and applications

Mitchell, John Anthony 23 June 2009 (has links)
An elasticity solution is presented for the static equilibrium equations of an axisymmetric composite cylinder under loadings due to embedded piezoelectric laminae. The solution is used to study both uniform and non-uniform distributions of the piezoelectric effect and results are verified using the finite element method. A cylindrical truss element actuator is developed based upon this analysis and shown to be useful in damping vibrations of truss-type structures. It has also been shown that by varying the distribution of the piezoelectric effect. spatially, modal actuators capable of actuating specific modes of axial vibrations in a bar can be developed. Finally, the effects of a piezoelectric patch have been investigated. The axial forces generated at the fixed ends of a cylinder are demonstrated to be proportional to the length of the patch. / Master of Science
335

Anti-sway control of a construction crane modeled as a two-dimensional pendulum

Ruddy, Thomas A. 30 December 2008 (has links)
Cranes are an indispensable aid to the construction industry, and much responsibility with regard to performance has been placed in the hands of the operator. The problem of controlling sway of the load due to crane motion, or wind effects must be solved dynamically by the operator to increase productivity and maintain safety. At the hands of inexperienced operators safety is sometimes sacrificed in order to expedite the required task. In an effort to minimize the loss of life and equipment, and to maximize productivity a system for actively damping the crane load has been developed. This paper discusses an active damping system using state feedback control for a crane load modeled as a two-dimensional pendulum. Mathematical analysis indicates that the control theory used to damp the sway in the pendulum may be extended linearly into three dimensions. Thus, two control algorithms, operating independently, can be used to damp sway in two horizontal dimensions. The designed system responds to sensed displacements of the load from equilibrium. It employs a control arm positioned a small distance below the boom tip that applies a force to the cable to damp the sway of the load. This system is intended to allow less experienced operators to work more efficiently and safely, decreasing training time and increasing overall productivity. / Master of Science
336

Experimental design and results of 2D dynamic damping of payload motion for cranes

Ramesh, Periyakulam S. 10 July 2009 (has links)
Cranes, which comprise a significant class of material handling equipment, are basically designed to lift and lower loads. In addition to dynamic loading, cranes are exposed to loads which may be environment specific. Many crane accidents are due to uncontrolled swaying of the payload resulting in collisions with construction workers or objects. At present, it is left to the operator to apply his/her skills in controlling this uncontrolled swaying. If the controlling is automated and computer controlled, the effect of human errors and limitations can be minimized. The control of this sway will thus greatly improve safety and significantly enhance productivity. The control strategy in the present thesis is based on applying appropriate, periodic balancing forces and moments to the crane cable to dampen the oscillation. The present thesis presents a discussion on the experimental methods attempted before the development of an automated control. / Master of Science
337

Active damping of a structure with low-frequency and closely- spaced modes: experiments and theory

Schamel, George C. January 1985 (has links)
This thesis covers the investigation of active damping on a cruciform beam laboratory structure along with the development of this structure. Also important to this and other research was the development of a calibration apparatus that produces accurate, repeatable calibrations for several types of laboratory instruments. The cruciform beam model is developed out of a simpler beam-cable model with the addition of a crosspiece that produces a pair of closely-spaced modes. This model is developed theoretically and verified experimentally. Experimental verification is also obtained for theoretical results in the simultaneous design of a structure and control system. A spatial filtering method for determining the modal response of the structure from the physical response is also investigated. / M.S.
338

Applying the Newmark Method to the Discontinuous Deformation Analysis

Peng, Bo 08 December 2014 (has links)
Discontinuous deformation analysis (DDA) is a newly developed simulation method for discontinuous systems. It was designed to simulate systems with arbitrary shaped blocks with high efficiency while providing accurate solutions for energy dissipation. But DDA usually exhibits damping effects that are inconsistent with theoretical solutions. The deep reason for these artificial damping effects has been an open question, and it is hypothesized that these damping effects could result from the time integration scheme. In this thesis two time integration methods are investigated: the forward Euler method and the Newmark method. The work begins by combining the Newmark method and the DDA. An integrated Newmark method is also developed, where velocity and acceleration do not need to be updated. In simulations, two of the most widely used models are adopted to test the forward Euler method and the Newmark method. The first one is a sliding model, in which both the forward Euler method and the Newmark method give accurate solutions compared with analytical results. The second model is an impacting model, in which the Newmark method has much better accuracy than the forward Euler method, and there are minimal damping effects. / Master of Science
339

Damping Behavior in Ferroelectric Reinforced Metal Matrix Composites

Poquette, Ben David 18 May 2005 (has links)
Ferroelectric-reinforced metal matrix composites (FR-MMCs) show promise as high damping materials for structural applications. Most structural materials are valued based on their stiffness and strength; however, stiff materials typically have limited inherent ability to dampen mechanical or acoustic vibrations. The addition of ferroelectric ceramic particles may also augment the strength of the matrix, creating a multifunctional composite. In this work, the damping behavior of FR-MMCs created by the addition of barium titanate (BaTiO3) discontinuous reinforcement in a bearing bronze (Cu-10w%Sn) matrix has been studied. It has been shown that even when combined with other traditional composite mechanisms, added damping ability has been achieved due to the ferroelectric nature of the reinforcement. FR-MMCs currently represent a material system capable of exhibiting increased damping ability, as compared to the structural metal matrix alone. / Master of Science
340

Analysis and Approximation of Viscoelastic and Thermoelastic Joint-Beam Systems

Fulton, Brian I. 14 August 2006 (has links)
Rigidizable/Inflatable space structures have been the focus of renewed interest in recent years due to efficient packaging for transport. In this work, we examine new mathematical systems used to model small-scale joint dynamics for inflatable space truss structures. We investigate the regularity and asymptotic behavior of systems resulting from various damping models, including Kelvin-Voigt, Boltzmann, and thermoelastic damping. Approximation schemes will also be introduced. Finally, we look at optimal control for the Kelvin-Voigt model using a linear feedback regulator. / Ph. D.

Page generated in 0.0472 seconds