• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 741
  • 173
  • 83
  • 60
  • 59
  • 23
  • 20
  • 18
  • 10
  • 10
  • 6
  • 6
  • 5
  • 5
  • 5
  • Tagged with
  • 1535
  • 303
  • 290
  • 289
  • 235
  • 196
  • 176
  • 146
  • 127
  • 123
  • 122
  • 111
  • 111
  • 92
  • 90
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
91

Efficient Biomolecular Computations Towards Applications in Drug Discovery

Forouzesh, Negin 02 July 2020 (has links)
Atomistic modeling and simulation methods facilitate biomedical research from many respects, including structure-based drug design. The ability of these methods to address biologically relevant problems is largely determined by the accuracy of the treatment of complex solvation effects in target biomolecules surrounded by water. The implicit solvent model – which treats solvent as a continuum with the dielectric and non-polar properties of water – offers a good balance between accuracy and speed. Simple and efficient, generalized Born (GB) model has become a widely used implicit solvent responsible for the estimation of key electrostatic interactions. The main goal of this research is to improve the accuracy of protein-ligand binding calculations in the implicit solvent framework. To address the problem (1) GBNSR6, an accurate yet efficient flavor of GB, has been thoroughly explored in the context of protein-ligand binding, (2) a global multidimensional optimization pipeline is developed to find the optimal dielectric boundary made of atomic and water probe radii specifically for protein-ligand binding calculations using GBNSR6. The pipeline includes (3) two novel post-processing steps for optimum robustness analysis and optimization landscape visualization. In the final step of this research, (4) accuracy gain the optimal dielectric boundary can bring in practice is explored on binding benchmarks, including the SARS-CoV-2 spike receptor-binding domain and the human ACE2 receptor. / Doctor of Philosophy / Drug discovery is one of the most challenging tasks in biological sciences as it takes about 10-15 years and $1.5-2 billion on average to discover a new drug. Therefore, efforts to speed up this process or lower its costs are highly valuable. Computer-aided drug design (CADD) plays a crucial role in the early stage of drug discovery. In CADD, computational approaches are used in order to discover, develop, and analyze drugs and similar biologically active molecules, such as proteins. Proteins are an important class of biological macromolecules that perform their functionality mainly through interactions with other molecules, for example, binding to small molecules so-called ligands. Thorough understanding of protein-ligand interactions is central to comprehending biology at the molecular level. In this study, we introduce and analyze a computational model used for protein-ligand binding free energy calculations. A global multidimensional optimization pipeline is developed to find the optimal parameters of the model,˘aparticularly˘athose parameters involved in the dielectric boundary. In order to examine the robustness of the optimal model to unavoidable perturbations and uncertainties, virtually inevitable in any complex system being optimized, a novel robustness metric is introduced. Finally, the robust optimal model is tested on protein-ligand benchmarks, including a complex related to the novel coronavirus. Results demonstrate relatively higher accuracy in terms of binding free energy calculations compared to reference models.
92

Scribe: A Clustering Approach To Semantic Information Retrieval

Langley, Joseph R 05 August 2006 (has links)
Information retrieval is the process of fulfilling a user?s need for information by locating items in a data collection that are similar to a complex query that is often posed in natural language. Latent Semantic Indexing (LSI) was the predominant technique employed at the National Institute of Standards and Technology?s Text Retrieval Conference for many years until limitations of its scalability to large data sets were discovered. This thesis describes SCRIBE, a modification of LSI with improved scalability. SCRIBE clusters its semantic index into discrete volumes described by high-dimensional extensions to computer graphics data structures. SCRIBE?s clustering strategy limits the number of items that must be searched and provides for sub-linear time complexity in the number of documents. Experimental results with a large, natural language document collection demonstrate that SCRIBE achieves retrieval accuracy similar to LSI but requires 1/10 the time.
93

Assessing impact of instruction treatments on positive test selection in hypothesis testing

Carruth, Daniel Wade 09 August 2008 (has links)
The role of factors previously implicated as leading to confirmation bias during hypothesis testing was explored. Confirmation bias is a phenomenon in which people select cases for testing when the expected results of the case are more likely to support their current belief than falsify it. Klayman (1995) proposed three primary determinants for confirmation bias. Klayman and his colleagues proposed that a general positive testing strategy leads to the phenomenon of confirmation bias. According to Klayman’s account, participants in previous research were not actively working to support their hypothesis. Rather, they were applying a valid hypothesis testing strategy that works well outside of laboratory tasks. In laboratory tasks, such as Wason’s 2-4-6 task (Wason, 1960), the strategy failed because the nature of the task takes advantage of particular flaws in the positive testing behavior participants learned through their experience with the real-world. Given Klayman’s proposed set of determinants for the positive testing strategy phenomenon, treatments were developed that would directly violate the assumptions supporting application of the positive testing strategy. If participants were able to identify and act on these violations of the assumptions, the number of positive tests was expected to be reduced. The test selection portion of the Mynatt, Doherty, and Tweney (1977) microworld experiment was modified with additional instruction conditions and a new scenario description to investigate the impact of the treatments to reduce confirmation bias in test selection. Despite expectations, the thematic content modifications and determinant-targeting instruction conditions had no effect on participant positive test selection.
94

Building an online UMLS knowledge discovery platform using graph indexing

Albin, Aaron 25 September 2014 (has links)
No description available.
95

Distinguishing Opportunity Types: Why It Matters and How To Do It

Welter, Christopher Thomas 20 June 2012 (has links)
No description available.
96

The relationship of discovery methods in mathematics to creative thinking and attitudes toward mathematics /

Studer, Marilyn Rita January 1971 (has links)
No description available.
97

Discovery and Validation of Metabolite Biomarkers in Breast Cancer Exosomes Using Liquid Chromatography-Mass Spectrometry

D'mello, Rochelle 03 January 2024 (has links)
Breast cancer (BC) is the second most diagnosed cancer in Canadian women. Early detection of this cancer is critical to improve patient survival and prognoses. Exosomes are proposed to be involved in tumor proliferation through the transfer of diverse biomolecules, including metabolites. The use of exosomes as biomarkers for early diagnosis of BC has recently garnered interest due to them having unique biomolecules in diseased cohorts. Hence, an untargeted metabolomic analysis of BC exosomes was performed using nano high-performance liquid chromatography coupled to tandem mass spectrometry (nLC-MS/MS) for BC diagnostic biomarker discovery. A total of 9 independent metabolite samples from non-tumorogenic MCF10A and highly metastatic MDA-MB-231 cell lines were analyzed. Bioinformatic analysis revealed 27 potential metabolite candidates unique to MDA-MB-231. Amongst 4 metabolites tested, one, N-Acetyl-L-Phenylalanine, was successfully validated. Overall, this study reveals that exosomes possess metabolites that can be candidates for early BC diagnosis.
98

An adaptive single-step FDR controlling procedure

Iyer, Vishwanath January 2010 (has links)
This research is focused on identifying a single-step procedure that, upon adapting to the data through estimating the unknown parameters, would asymptotically control the False Discovery Rate when testing a large number of hypotheses simultaneously, and exploring some of the characteristics of this procedure. / Statistics
99

<b>Application of the 'Hydrogen Bond Wrapping' Concept for the Computer-Aided Drug Discovery of TMPRSS2 Inhibitors</b>

Suraj C Ugrani (18296848) 04 April 2024 (has links)
<p dir="ltr">In computer-aided drug discovery, methods that are approximate, but computationally inexpensive play an essential role during the initial phase of the discovery process. Although often inaccurate, they enable the screening of vast drug libraries to identify potential inhibitors with favorable activities, before large amounts of computational resources could be dedicated to studying these individual molecules. This thesis presents<b> </b>such an approach, based on the concept of hydrogen bond wrapping, to study protein-ligand interactions in the context of drug discovery. The ‘wrapping’ refers to the tendency of hydrophobic groups to surround a hydrogen bond in water, leading to its desolvation, thereby stabilizing it.</p><p dir="ltr">Herein, a molecular descriptor was employed, which quantifies the extent of hydrophobic wrapping around a protein’s backbone hydrogen bonds (BHBs) and could help speed up the discovery process by providing cues for the design or optimization of inhibitors. Additionally, these insights could help tailor not just the binding affinity of inhibitors, but also their specificity toward an intended target protein. The human transmembrane protease serine 2 (TMPRSS2) was used as an illustrative target protein due to the pressing need for COVID-19 therapeutics, and since the current understanding of the binding mechanisms of known TMPRSS2 inhibitors is limited.</p><p dir="ltr">Molecular docking with a Generalized Born - surface area (GBSA) scoring function was first performed to virtually screen for TMPRSS2 inhibitors. The molecular descriptor was then used to analyze the change in wrapping groups of TMPRSS2 BHBs due to docked ligands, with the aim of identifying BHBs with a high propensity for desolvation. The BHBs involving residues Cys437, Gln438, Asp440, and Ser441 of TMPRSS2 were seen to have some of the largest average increases in wrapping. These general results were also compared to results from docking of the known TMPRSS2 inhibitors, camostat, and nafamostat.</p><p dir="ltr">The data generated from docking were then used to examine potential applications of the wrapping molecular descriptor using machine learning techniques: (i) for prediction of the solvent-accessible surface area term ΔG<sub>sa</sub> of the GBSA score using regression and (ii) for classifying the solvent interactions of a TMPRSS2-inhibitor complex as favorable or unfavorable. The descriptor was seen to be only weakly related to ΔG<sub>sa</sub>; the best-performing regression model had a Pearson correlation coefficient of 0.76 between the predictions and the actual values. The ability of the descriptor to classify solvent interactions was more satisfactory, with a highest value for area under the receiver operating characteristic curve of 0.75.</p><p dir="ltr">The descriptor was then used to analyze the effect of inhibitor binding on the dynamics of TMPRSS2 BHBs. For this, molecular dynamics simulation was carried out for the uncomplexed TMPRSS2, as well as its complex with known inhibitors and hit molecules from docking. The binding of these ligands was seen to improve the stability of TMPRSS2; certain BHBs which were unstable or not formed in the uncomplexed case, showed increased stability. These prominently included a couple of BHBs identified from docking as having gained a large increase in wrapping. The improved stability coincided with an increase in wrapping groups in several cases. The descriptor also successfully rationalized the desolvation of a few BHBs due to inhibitor binding.</p><p dir="ltr">This work demonstrates the potential application of the concept of hydrogen bond wrapping in understanding the mechanism of inhibitor binding and the resultant desolvation effects on a protein’s BHBs, without computationally expensive calculations. While the analysis methods require further improvement, the wrapping descriptor shows promising results and could be developed into a simple, yet powerful tool for drug discovery.</p>
100

Knowledge-Discovery Incorporated Evolutionary Search for Microcalcification Detection in Breast Cancer Diagnosis.

Peng, Yonghong, Yao, Bin, Jiang, Jianmin January 2006 (has links)
No / Objectives The presence of microcalcifications (MCs), clusters of tiny calcium deposits that appear as small bright spots in a mammogram, has been considered as a very important indicator for breast cancer diagnosis. Much research has been performed for developing computer-aided systems for the accurate identification of MCs, however, the computer-based automatic detection of MCs has been shown difficult because of the complicated nature of surrounding of breast tissue, the variation of MCs in shape, orientation, brightness and size. Methods and materials This paper presents a new approach for the effective detection of MCs by incorporating a knowledge-discovery mechanism in the genetic algorithm (GA). In the proposed approach, called knowledge-discovery incorporated genetic algorithm (KD-GA), the genetic algorithm is used to search for the bright spots in mammogram and a knowledge-discovery mechanism is integrated to improve the performance of the GA. The function of the knowledge-discovery mechanism includes evaluating the possibility of a bright spot being a true MC, and adaptively adjusting the associated fitness values. The adjustment of fitness is to indirectly guide the GA to extract the true MCs and eliminate the false MCs (FMCs) accordingly. Results and conclusions The experimental results demonstrate that the incorporation of knowledge-discovery mechanism into the genetic algorithm is able to eliminate the FMCs and produce improved performance comparing with the conventional GA methods. Furthermore, the experimental results show that the proposed KD-GA method provides a promising and generic approach for the development of computer-aided diagnosis for breast cancer.

Page generated in 0.0351 seconds