• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 5
  • 4
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Avaliação ambiental de diferentes formas de geração de energia elétrica

GUENA, ANA M. de O. 09 October 2014 (has links)
Made available in DSpace on 2014-10-09T12:52:35Z (GMT). No. of bitstreams: 0 / Made available in DSpace on 2014-10-09T14:01:39Z (GMT). No. of bitstreams: 0 / Dissertação (Mestrado) / IPEN/D / Instituto de Pesquisas Energeticas e Nucleares - IPEN/CNEN-SP
2

Low-cost process monitoring for polymer extrusion

Deng, J., Li, K., Harkin-Jones, E., Price, M., Fei, M.R., Kelly, Adrian L., Vera-Sorroche, Javier, Coates, Philip D., Brown, Elaine C. January 2014 (has links)
No / Polymer extrusion is regarded as an energy-intensive production process, and the real-time monitoring of both energy consumption and melt quality has become necessary to meet new carbon regulations and survive in the highly competitive plastics market. The use of a power meter is a simple and easy way to monitor energy, but the cost can sometimes be high. On the other hand, viscosity is regarded as one of the key indicators of melt quality in the polymer extrusion process. Unfortunately, viscosity cannot be measured directly using current sensory technology. The employment of on-line, in-line or off-line rheometers is sometimes useful, but these instruments either involve signal delay or cause flow restrictions to the extrusion process, which is obviously not suitable for real-time monitoring and control in practice. In this paper, simple and accurate real-time energy monitoring methods are developed. This is achieved by looking inside the controller, and using control variables to calculate the power consumption. For viscosity monitoring, a 'soft-sensor' approach based on an RBF neural network model is developed. The model is obtained through a two-stage selection and differential evolution, enabling compact and accurate solutions for viscosity monitoring. The proposed monitoring methods were tested and validated on a Killion KTS-100 extruder, and the experimental results show high accuracy compared with traditional monitoring approaches.
3

Cost savings on mine dewatering pumps by reducing preparation- and comeback loads / Charl Cilliers

Cilliers, Charl January 2014 (has links)
Using chilled water within South African gold mines is paramount to the purpose of extracting gold ore efficiently. Using water for cooling, drilling and sweeping and the release of underground fissure water causes the accumulation of vast amounts of water in underground dams. Deep mines use cascading pump systems for dewatering, which is an electrical energy intensive dewatering method. Due to the recent equalisation of demand to generation capacity of electrical energy in South Africa, various methods towards demand side reduction have been implemented. With the introduction of a time-of-use (TOU) tariff structure by Eskom, the implementation of projects that shift load from peak TOU times to times of the day when electrical energy is less expensive has increased. To enable load shifting on mine dewatering pumps, preparation before and recovery after peak TOU is needed for effective results. This induces a preparation- and comeback load in the standard TOU. With an annual increase in TOU tariffs and the rate of increase of standard TOU being greater than that of the peak TOU, a reduction in electrical energy consumption before and after peak TOU is needed. To enable this, a step-by-step control technique was developed to promote the shifting of load from standard- to off-peak TOU, while still realising a full load shift from peak TOU. This technique entails dynamic control ranges of underground dam levels as opposed to the conventional constant control range method. Two case studies were used to test the developed technique. Results indicated significant additional financial savings when compared to conventional control methods. Additional savings of R1,096,056.65 and R579,394.27 per annum were respectively achieved for both case studies. / MIng (Mechanical Engineering), North-West University, Potchefstroom Campus, 2014
4

Cost savings on mine dewatering pumps by reducing preparation- and comeback loads / Charl Cilliers

Cilliers, Charl January 2014 (has links)
Using chilled water within South African gold mines is paramount to the purpose of extracting gold ore efficiently. Using water for cooling, drilling and sweeping and the release of underground fissure water causes the accumulation of vast amounts of water in underground dams. Deep mines use cascading pump systems for dewatering, which is an electrical energy intensive dewatering method. Due to the recent equalisation of demand to generation capacity of electrical energy in South Africa, various methods towards demand side reduction have been implemented. With the introduction of a time-of-use (TOU) tariff structure by Eskom, the implementation of projects that shift load from peak TOU times to times of the day when electrical energy is less expensive has increased. To enable load shifting on mine dewatering pumps, preparation before and recovery after peak TOU is needed for effective results. This induces a preparation- and comeback load in the standard TOU. With an annual increase in TOU tariffs and the rate of increase of standard TOU being greater than that of the peak TOU, a reduction in electrical energy consumption before and after peak TOU is needed. To enable this, a step-by-step control technique was developed to promote the shifting of load from standard- to off-peak TOU, while still realising a full load shift from peak TOU. This technique entails dynamic control ranges of underground dam levels as opposed to the conventional constant control range method. Two case studies were used to test the developed technique. Results indicated significant additional financial savings when compared to conventional control methods. Additional savings of R1,096,056.65 and R579,394.27 per annum were respectively achieved for both case studies. / MIng (Mechanical Engineering), North-West University, Potchefstroom Campus, 2014
5

Разработка стратегии энергетического менеджмента промышленного предприятия : магистерская диссертация / Developing the strategy of energy management at industrial enterprises

Кирикова, Е. А., Kirikova, E. A. January 2015 (has links)
Энергоэффективность в современных условиях становится одним из стратегических факторов успеха промышленных предприятий, внося вклад как в сокращение операционных издержек и рациональное использование всех источников энергии, так и в повышение экологических показателей производства. Основой энергоменеджмента на предприятии является разработка энергетической стратегии предприятия и построение на ее основе системы планирования, организации и контроля энергоэффективности. Включение в состав подобной стратегии подходов к управлению человеческим капиталом как совокупностью знаний, умений и навыков в области энергоэффективного производства, подкрепленных системой материальной и нематериальной мотивации, становится одной из приоритетных задач в области управления промышленным предприятием. Системный подход к разработке и внедрению технологий энергосбережения стал одним из ключевых направлений развития энергоменеджмента на промышленных предприятиях. В настоящее время на стратегическом уровне управления он осуществляется за счет ряда международных стандартов, которые носят рекомендательный характер. Очевидно, что на большинстве современных промышленных предприятий внедрены элементы энергетической политики, формализованы основные элементы бизнес-процессов, относящихся к энергоменеджменту. Однако необходимо достичь понимания, что функционирование системы энергоменеджмента невозможно без инновационного подхода, суть которого заключается в использовании внутренних интеллектуальных ресурсов для запуска механизмов активизации отдельных бизнес-процессов, направленных на энергосбережение. Инновационный подход является логичным продолжением системного подхода, и рассматривается нами как важнейшая предпосылка развития человеческого капитала, который бы способствовал внедрению уникальных технических и управленческих решений для повышения энергетической эффективности. Условия внедрения стратегического энергоменеджмента остаются уникальными для каждого отдельного предприятия, однако, как показывает практика, они всегда связаны с развитием человеческих ресурсов и формированием индивидуальной ответственности в области энергосбережения. Выработка энергетической политики и формирование системы управления энергопотреблением являются основами стратегического энергоменеджмента на промышленном предприятии. Однако, как показывает практика управления, подходы к реализации энергоменеджмента могут осуществляться в точки зрения различных стратегий, среди которых ключевую роль играют инвестиционные стратегии. Они определяют масштабы инвестирования в сфере энергосбережения и совершенствования системы энергосбережения в целом, позволяют определить перспективные направления инвестирования и задать стандарты инвестиционной привлекательности проектов по энергосбережению. В настоящей диссертации предлагается и обосновывается уникальная для отечественного опыта концепция формирования энергоэффективного человеческого капитала, которая позволит более эффективно внедрять на промышленных предприятиях принципы стратегического энергоменеджмента на всех уровнях. Предложен инновационный подход, который позволит запустить механизмы стратегического энергоменеджмента на практике с максимальной эффективностью посредством формирования и развития энергоэффективного человеческого капитала, а также классификация мероприятий в области энергоменеджмента, по уровню их инвестиционной привлекательности и масштабам влияния на всю производственную систему. На основе классификации предлагаются инвестиционные стратегии различного типа, выбор которых позволит сформировать портфель проектов в области повышения энергоэффективности на стратегическом уровне. Применение предлагаемого инструментария осуществлено на примере одного их крупных российских металлургических предприятий – ОАО «Уралэлектромедь». По результатам оценки инвестиционных мероприятий дан анализ возможных путей расширения портфеля энергоэффективных проектов на предприятии. / Contributing to a reduction of operating costs and efficient use of all energy sources and improving the environmental performance of production, energy efficiency in modern conditions became a strategic success factor of the industrial enterprises. The strategic underpinning for energy management of the company concerns the development of energy strategy and development of business processes based on planning, organization and control of energy efficiency. The inclusion of strategic approaches to the management of human capital as a basis of knowledge and skills in energy-efficient technologies, enforced by a system of material and non-material motivation, is one of the priorities in management. A systematic approach to the development of energy-saving technologies has become one of the key areas of energy management in industrial enterprises. Currently, at the strategic level of management it is carried out by a number of international standards, which are advisory in nature. It is obvious that in most modern industrial enterprises elements of energy policy are introduced and basic elements of business processes relating to energy management are formalized. However, we deduce that the functioning of the energy management system is not possible without an innovative approach, the essence of which is the use of internal intellectual resources to trigger activation of specific business processes aimed at energy conservation. The innovative approach is a logical continuation of a systematic approach, and is viewed as an essential prerequisite for the development of human capital, which would promote the introduction of unique technical and management solutions to improve energy efficiency. Terms and conditions of the strategic energy management implementation are unique to each company, but in practice they are always linked to the development of human resources and the formation of individual responsibility in the field of energy efficiency. Development of energy policy and the formation of energy management systems are the pillars of the strategic energy management at the industrial enterprise. However, in practice management approaches to the implementation of energy management can be implemented in terms of the different strategies, including the key role played by investment strategies. They define the scope of investment in energy efficiency and improving energy-saving system as a whole, allowing to determine promising areas of investment and to set standards for the investment attractiveness of energy saving projects. In this dissertation we propose a concept of energy efficient human capital, which will more effectively implement the principles of strategic energy management at all levels of industrial enterprises. It is proposes an innovative approach that will run on the mechanisms of strategic energy management practices as efficiently as possible through the formation and development of energy-efficient human capital. And we propose a classification of activities in the field of energy management, the level of their investment attractiveness and scale effects on the entire production system. Based on the classification proposed investment strategies of different types, the choice of which will develop a portfolio of projects in the field of energy efficiency at a strategic level. The application of the instruments carried by the example of one of the major Russian steel companies - "Uralelectromed." The assessment of investment activities is given analysis of possible ways to expand the portfolio of energy efficiency projects in the enterprise.

Page generated in 0.0377 seconds