• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 375
  • 73
  • 60
  • 36
  • 30
  • 11
  • 9
  • 8
  • 5
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • Tagged with
  • 786
  • 786
  • 101
  • 99
  • 84
  • 79
  • 78
  • 77
  • 76
  • 70
  • 68
  • 59
  • 58
  • 57
  • 55
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
151

Gene transfer in murine MPS IIIA using canine adenoviral vectors.

Lau, Adeline Allison January 2007 (has links)
Mucopolysaccharidosis type IIIA (MPS IIIA) is an autosomal-recessively inherited disorder caused by the deficiency of lysosomal sulphamidase (NS) enzyme activity, resulting in the accumulation of the glycosaminoglycan (GAG) heparan sulphate (HS). MPS IIIA patients experience progressive and severe neurological deterioration with death usually occurring in the mid-late teenage years. A naturally-occurring mouse model of MPS IIIA has been characterised and the biochemical, histological and behavioural changes closely parallel the human condition. In order to treat the neurological effects of MPS IIIA, it is anticipated that a continual supply of replacement enzyme to affected cells will be required. Consequently, this study aimed to evaluate the efficacy, longevity and safety of gene therapy as a potential treatment for MPS IIIA. Canine adenoviral vectors (CAV-2) were selected on the basis of several important properties. They are non-integrating, are predicted to be less immunogenic in humans than human-derived viral vectors and mediate transgene expression for at least 1 year in vivo. An E1-deleted (∆E1) CAV-2 vector, CAV-NS, co-expressing recombinant human NS (rhNS) and Green Fluorescent Protein (GFP) was constructed and purified. In vitro testing revealed rhNS produced by CAV-NS significantly decreased sulphated GAG storage in human MPS IIIA fibroblasts in a mannose-6-phosphate-dependent manner. Preliminary studies in young adult guinea pigs with CAV-GFP demonstrated widespread GFP expression in the absence of a humoral response. In contrast, minimal GFP expression was found in CAV-injected adult mice due to formation of neutralising antibodies against the CAV-2 capsid. Consequently, intraventricular delivery of CAV-NS was evaluated in newborn mice at various doses. Widespread and dose-dependent GFP expression was observed and the optimal dose for large-scale studies was determined to be 109 CAV-NS particles/hemisphere. Antibodies against CAV-2, rhNS or GFP were not detected. Concurrently, the cognitive function and anxiety-related behaviours of unaffected and MPS IIIA mice were evaluated. MPS IIIA mice had significantly impaired memory and spatial learning in the Morris Water Maze (16-wks) and reduced anxiety in the Elevated Plus Maze (18-wks) when compared to unaffected animals. In a large therapeutic assessment trial, newborn MPS IIIA or unaffected mice received 109 particles of CAV-NS, saline or remained uninjected. GFP expression was visualised for at least 20-wks post-injection. Reductions in the vacuolation of ependymal and choroidal cells of the lateral ventricle and the cerebral cortex of treated MPS IIIA animals were observed in some GFP-positive (and presumably rhNS-expressing) regions. Furthermore, improvements in reactive astrogliosis, but not in the number of activated microglia, were measured in CAVNS- treated MPS IIIA mice. However, insufficient CAV-NS-mediated rhNS expression was generated to improve functional changes as assessed by a behavioural test battery (motor function, open field activity, Elevated Plus Maze, Morris Water Maze), potentially due to chronic inflammatory responses against the CAV-2 vector. Collectively, these data suggest that early intervention with ∆E1 CAV-NS gene therapy was able to improve several components of neuropathology in MPS IIIA animals but was unable to significantly alter the clinical progression of murine MPS IIIA. / http://proxy.library.adelaide.edu.au/login?url= http://library.adelaide.edu.au/cgi-bin/Pwebrecon.cgi?BBID=1295758 / Thesis (Ph.D.) -- University of Adelaide, School of Paediatrics and Reproductive Health, 2007
152

Engineering Protein Molecular Switches To Regulate Gene Expression with Small Molecules

Rohatgi, Priyanka 29 November 2006 (has links)
Small molecule dependent molecular switches that control gene expression are important tool in understanding biological cellular processes and for regulating gene therapy. Nuclear receptors are ligand activated transcription factors that have been engineered to selectively respond to synthetic ligands and used as regulators of gene expression. In this work the retinoid X receptor (RXR), has been used to develop an inducible molecular switch with a near drug like compound LG335. Three RXR variants (Q275C; I310M; F313I), (I268A; I310A; F313A; L436F), (I268V; A272V; I310M; F313S; L436M) were created via site-directed mutagenesis and a structure based approach, such that they preferentially bind to the synthetic ligand LG335 and not its natural ligand, 9-cis retinoic acid. These variants show reverse ligand specificity as designed and have an EC50 for LG335 of 80 nM, 30 nM, 180 nM, respectively. The ligand binding domains of the RXR variants were fused to a yeast transcription factor Gal4 DNA binding domain. This modified chimeric fusion protein showed reverse response element specificity as designed and recognized the Gal4 response element instead of the RXR response element. The modified RXR protein did not heterodimerize with wild type RXR or with other nuclear receptor such as retinoic acid receptor. These RXR-based molecular switches were tested in retroviral vectors using firefly luciferase and green fluorescence protein and they maintain their inducible behavior with LG335. These experiments demonstrate the orthogonality of RXR variants and their possible use in regulating gene therapy.
153

rAAV-based gene therapy for molybdenum cofactor deficiency type B

Jakubiczka-Smorag, Joanna 03 June 2015 (has links)
No description available.
154

Quantitative analysis of lentivirus incorporation of heterologous viral and non-viral proteins for lung gene therapy

Jung, Cindy 12 November 2007 (has links)
Gene therapy is the delivery of genetic material to cells for a therapeutic effect. Retroviruses are one of the most common viral vectors used for gene therapy, especially lung gene therapy. However the lung has many physical and immunological barriers to gene transfer vectors, and currently, too few cells are genetically modified for the effective treatment of lung diseases such as cystic fibrosis. One of the main reasons for low cell transduction is the lack of commonly-used receptors for gene therapy vectors on the apical surface of polarized epithelial cells. The objective of this project was to determine how to incorporate proteins into the lentiviral lipid bilayer in order to develop a recombinant retrovirus that can efficiently deliver genes to polarized epithelial cells via their apical membranes. We analyzed the process of incorporating heterologous viral and non-viral proteins into lentiviruses and determined key factors that allowed for successful protein incorporation into the lentiviral lipid bilayer. We found that lipid rafts segregated raft proteins, and for a protein to be incorporated into virus particles, it must be colocalized with lentivirus-associated rafts. When cells were treated with the cholesterol-extracting compound, methyl-beta-cyclodextrin, previously sequestered viral and non-viral raft proteins were then colocalized and non-viral proteins were incorporated into lentiviruses. We also created a lentivirus pseudotyped with envelope proteins from human parainfluenza type 3 (HPIV3), which naturally targets polarized epithelial cells of the lung. Lentiviruses were able to incorporate HPIV3 glycoproteins, hemagglutinin-neuraminidase (HN) and fusion (F), and were able to transduce polarized cells in a manner consistent with lentiviral-mediated transduction via sialated receptors for HPIV3, however titers were too low for clinical use. We increased protein expression of HN and found that while expression, envelope incorporation, and titer increased, lentiviruses still incorporated too few envelope proteins for efficient transduction. We determined low envelope incorporation rates were due to lack of interactions with Gag, and increasing active and passive interactions with Gag enhanced HN and F incorporation into lentiviruses. Overall, this research is significant because it provides insight into viral assembly and protein incorporation for the generation of pseudotyped lentiviruses for human gene transfer.
155

Gene therapy for mesothelioma : studies of conditionally replicative adenoviruses and measles virus.

Xia, Wei January 2008 (has links)
Malignant mesothelioma (MM) is an aggressive malignancy of the pleural and peritoneal surfaces. Australia has the highest reported national incidence of mesothelioma in the world, and rates are increasing (Leigh et al., 2002). The clinical outcome for patients with this disease is extremely poor, with median survival of 9 to 12 months (Rizzo et al., 2001; Carbone et al., 2002). The latest developments in chemotherapy, radiotherapy and radical surgery have done little to improve the overall survival rate (Kindler 2000; Zellos et al., 2002). New approaches to therapy are thus required (Nowak et al., 2002). Cancer therapy using conditionally replicative adenoviruses (CRAds) and attenuated measles virus (vaccine strain MV-Edm) are novel and promising approaches to cancer treatment. CRAds strategy relies on selective viral replication in tumour cells but not normal cells. Major efforts have been directed toward achieving selective replication by the deletion of viral functions dispensable in tumour cells or by the regulation of viral genes with tumour-specific promoters (Alemany et al., 2000). However, the major clinical limitation of viral therapy has been lack of efficacy rather than safety concerns. In this study, I constructed CRAds in which tumour-specific promoter for Flt-1 (vascular endothelial growth factor receptor) control the essential E1 gene expression, and evaluated the cell-killing efficacy and specificity of CRAds driven by VEGF and Flt-1 promoters in the number of established mesothelioma cell lines and actual primary tumour cells from patients. CRAds with either VEGF or flt-1 promoters showed a strong killeg effect on mesothelioma cells. Co-delivery of CRAds with MMP-9 (matrix metalloproteinase-9) was assessed to determine whether therapeutic efficacy could be improved by reducing tumourassociated fibrosis thereby enhancing viral spread through a tumour mass. Combined therapy did result in greater suppression of tumour growth in vivo. I also identified an immuno-competent murine model of mesothelioma that was permissive for adenoviral replication. Combined viral therapy with immunotherapy (FGK45, an anti-CD40 antibody) in this model resulted in greater effect than Adwt or FGK45 alone and in greatest survival. I evaluated the capacity of MV-Edm to infect human mesothelioma cells to form syncytia, and lead to apoptosis and cell death. I also assessed the mode of death by analysis of markers of apoptosis including caspase-3. In vivo study showed that MVEdm- GFP transduction could be detected in human xenografts in immune deficient mice. Further studies to evaluate the mechanisms and efficacy of anti-tumour immune stimulation induced by tumour cell killing with CRAds and MV-Edm will be discussed in this study. MV-Edm has good killing effect on mesothelioma cells in vitro. In summary the work presented herein provide new insights into stratgies to improve viral therapies for mesothelioma. / http://proxy.library.adelaide.edu.au/login?url= http://library.adelaide.edu.au/cgi-bin/Pwebrecon.cgi?BBID=1342596 / Thesis (Ph.D.) - University of Adelaide, School of Medicine, 2008
156

Enhancement of lentiviral vector production through alteration of virus-cell interactions

Gelinas, Jean-Francois January 2016 (has links)
Gene therapy is the introduction or alteration of genetic material with the intention to treat disease. To support this aim, viruses have been modified, with elements linked to viral pathogenicity removed from their genome and replaced by the genetic material to be delivered. Gene therapy vectors based on lentiviruses have many advantages, such as the ability to transduce non-dividing cells and to target specific cell types via pseudotyping. They have been successfully used in ex vivo clinical trials for several haematopoietic stem cell disorders. Lentiviral vectors, however, suffer from substantially lower titres than the more popular adeno-associated virus (AAV)-based vectors and therefore have limited applicability for in vivo gene therapy which requires much greater quantities of virus. The main aim of this thesis was to investigate strategies to improve lentiviral vector productivity during manufacture, in order to increase the likelihood of lentiviruses being adopted for disease treatment. Initial experiments were based on the lentiviral vector manufacturing process currently being developed by the United Kingdom Cystic Fibrosis Gene Therapy Consortium for the generation of highly concentrated, purified lentivirus for clinical use. Supplementation of FreeStyle 293 Expression Medium used during upstream processing was attempted, but none of the assessed supplements led to significant increases in lentiviral vector production. Investigation into intrinsic immunity to viral infection indicated that over-expression of the protein kinase RNA-activated (PKR) led to lower production titres, but over-expression of its inhibitors was not successful at increasing titres. The focus then shifted to reducing, or 'knocking-down', inhibitory factors present in the host cells, which could adversely affect viral titres. Investigation of the published HIV-1 literature revealed a possible 152 candidate inhibitory factors described as having a negative impact on HIV-1 replication in the late stages of the life cycle of the virus. A novel siRNA screen was developed to assess the effect of ‘knock-down' of inhibitory factors on lentiviral vector titre. Application of the screen to 89 candidate inhibitory factors identified nine genes which, when knocked-down, resulted in increased lentiviral vector production by more than 40%. Further work will be necessary to understand the role of the inhibitory factors in lentiviral vector production, but novel cell lines in which genes encoding these factors have been permanently deleted from producer cells could lead to higher titres, reducing costs in the manufacture of lentiviral vectors and making in vivo gene therapy more feasible from a health economics perspective.
157

ANTI-TUMOR AND RADIO-SENSITIZING PROPERTIES OF AD-IU2, A PROSTATE-SPECIFIC REPLICATION-COMPETENT ADENOVIRUS ARMED WITH TRAIL

Jimenez, Juan Antonio 18 March 2009 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / In this thesis, I investigated the preclinical utility and antitumor efficacy of TRAIL delivered by Ad-IU2, a prostate-specific replication-competent adenovirus (PSRCA), against androgen-independent prostate cancer. Through transcriptional control of adenoviral early genes E1a, E1b and E4, as well as TRAIL by two bidirectional prostate-specific enhancing sequences (PSES), expression of TRAIL as well as adenoviral replication was limited to prostate-specific antigen and prostate-specific membrane antigen (PSA/PSMA)-expressing cells. Ad-IU2 replicated efficiently in and was restricted to PSA/PSMA-positive prostate cancer cells and induced 5-fold greater apoptosis in androgen-independent CWR22rv and C4-2 prostate cancer cells than the PSRCA control not expressing TRAIL. Ad-IU2 exhibited superior killing efficiency in PSA/PSMA-positive prostate cancer cells at doses 5 to 8-fold lower than that required by a non-TRAIL expressing PSRCA to produce a similar effect. This enhanced cytotoxic effect was not observed in non-prostatic cells, however. As an enhancement of its therapeutic efficacy, Ad-IU2 exerted a bystander effect through either direct cell-to-cell contact or soluble factors present in conditioned media from Ad-IU2-infected cells. In vivo, Ad-IU2, as compared to a control PSRCA, markedly suppressed the growth of subcutaneous CWR22rv xenografts at six weeks post-treatment (3.1 vs. 17.1-fold growth of tumor). The treatment of androgen-independent prostate cancer with Ad-IU2 prior to external beam radiation therapy (EBRT) significantly reduced clonogenic survival with dose reduction factors of 4.91 and 2.43 for CWR22rv and C4-2 cells, respectively. Radio-sensitization by Ad-IU2 was restricted to PSA/PSMA-positive cells. Combinatorial radio-gene therapy resulted in accumulation of cells in G1 phase and a perturbation of the radiation-induced G2 phase arrest. This multi-modal approach combining viral lysis, apoptosis-inducing gene therapy, and radiation therapy could have great impact in achieving complete local tumor control while reducing radiation dose and associated treatment morbidities. This would result in improvement of the clinical outcome of patients with high risk prostate cancer.
158

Use of murine models to test novel gene transfer strategies for the treatment of Fanconi anemia

Leath, Anna C. 09 March 2011 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / The dawn of the genetic era has allowed for investigation of gene transfer therapy as a treatment for certain diseases. Fanconi anemia (FA) is a rare genetic disorder in which the majority of patients develops progressive bone marrow failure (BMF) and require bone marrow transplantation. A possible alternative treatment is autologous gene therapy; however, original clinical trials involving gene transfer for FA were unsuccessful. This has led to re-evaluation of the gene transfer protocols, the vectors and also a deeper investigation of the FA pathway itself. My work has focused on illuminating these areas to further advance gene transfer therapy for FA. Many gene transfer protocols require the hematopoietic stem and progenitor cells (HSC/HPC) to be collected and then transduced ex vivo. The most common collection method is mobilization of the HSC/HPC to the peripheral blood (PB) using granulocyte colony-stimulating factor (G-CSF) and collection via apheresis. In FA patients G-CSF fails to mobilize a sufficient number of HSC/HPC. This has led to research into agents such as AMD3100, a CXCR4 antagonist, which may replace or augment G-CSF mobilization. These data show in two FA murine models that AMD3100 synergizes with G-CSF resulting in a significant increase in mobilization as compared to G-CSF alone. Previous work in our lab has shown that prototype foamy virus (FV) is an efficient gene transfer vector. Here a modified FV vector is used to transduce mobilized FA cells. The data indicate that long-term repopulating cells mobilized with both G-CSF and AMD3100 can be efficiently transduced by our FV vector. Clinically, FA is characterized mainly by BMF, but also by myelodysplasia (MDS) and acute myeloid leukemia (AML). However, current FA murine models do not display these disease phenotypes. These data show that double-mutant Fancc-/-;Fancg-/- mice spontaneously develop BMF, MDS and complex random chromosomal abnormalities that the single-mutant mice do not. Importantly, this model closely recapitulates the phenotypes found in FA patients and may be useful as a preclinical platform to evaluate the molecular pathogenesis of spontaneous BMF and MDS in FA and novel gene transfer protocols for FA.
159

Improved lentiviral vectors for haematopoietic stem cell gene therapy of Mucopolysaccaridosis type IIIA

Sergijenko, Ana January 2012 (has links)
Mucopolysaccharidosis type IIIA (MPS IIIA) is caused by mutations in the N-sulphoglucosamine sulphohydrolase (SGSH) gene, leading to cellular accumulation of heparan sulphate and progressive neurodegeneration in patients. One of the proposed treatment methods is haematopoietic stem cell (HSC) gene therapy, which should result in an excess of SGSH produced in the peripheral organs and brain. The pre-clinical feasibility of this approach was demonstrated by our group in a mouse model of MPS IIIA. However, the overall efficiency of this method was limited and a number of approaches to solving these issues were addressed in this project in order to bring this therapy closer to clinical application. Our first aim was to optimise transduction of HSCs using cytokines, bovine serum albumin (BSA), and chemicals, such as MG132, genistein and valproic acid. Addition of BSA with cytokines improved cell viability, addition of MG132/ BSA/ cytokines improved transduction, but also caused cellular toxicity, while addition of genistein was inefficient. Addition of valproic acid with cytokines resulted in increased number of colony forming units. Next, we generated clinically applicable third generation pCCL lentiviral vector backbones with the eGFP reporter gene driven by one of ubiquitous hPGK or myeloid specific hCD11b and hCD18 internal human promoters, and optimised production of lentiviral vectors to increase titre and reduce production cost. These lentiviral vectors were used to transduce lineage depleted HSCs and transplanted into WT mice. Full chimerism and over 80% transduction were achieved with an average of 5 vector copy numbers/ cell. The hCD11b promoter resulted in the highest eGFP expression in monocytes and B cells in blood, but was weaker than the hPGK in T cells. The hCD18 promoter was more monocyte-specific but weak. Significant numbers of GFP-positive microglial cells were present in the brain from all groups, with an average of 25% transduced CD11b-positive cells in perfused mice. We subsequently codon-optimised (CO) the SGSH gene significantly improving enzyme activity, and transduced lineage depleted WT cells with one of hCD18.SGSH-CO, hCD11b.SGSH-CO, or hPGK.SGSH-CO lentiviral vectors, or MPS IIIA cells with either hCD11b.SGSH-CO or hPGK.SGSH-CO lentiviral vectors. These transduced cells were transplanted into MPS IIIA mice and outcomes were measured 6 months later. Only treatment with the hCD11b.SGSH-CO-LV transduced WT or MPS IIIA HSCs corrected abnormal behaviour of MPS IIIA mice. However, all treatments resulted in complete GAG storage clearance in the periphery and brain, and significantly elevated enzyme activity in the brain, liver and spleen to 7-11%, 60-75%, and 170-250% of WT enzyme activity respectively. A fine threshold of over 8.6% brain enzyme activity appeared to be required for behavioural correction in MPS IIIA mice. Further assessment of treated mice for the amount of secondary storage, HS sulphation patterning, neuroinflammation and longevity are still required for complete therapeutic assessment. However, it appears that neurological correction of the MPS IIIA mouse using MPS IIIA cells is feasible using a clinically-relevant pCCL vector with the hCD11b promoter and the codon-optimised SGSH gene.
160

Recombinant adeno-associated virus vector as a novel vehicle organ transplantation and long-term allograft survival induced by rAAV-hCTLA4Ig gene transfer combined with low-dose FK506

楊振帆, Yang, Zhenfan. January 2002 (has links)
published_or_final_version / Surgery / Doctoral / Doctor of Philosophy

Page generated in 0.0454 seconds