• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Impact of sulphuric acid on cylinder lubrication for large 2-stroke marine diesel engines: Contact angle, interfacial tension and chemical interaction

Sautermeister, F.A., Priest, Martin, Lee, P.M., Fox, M.F. January 2013 (has links)
other / no / The effect of sulphuric acid on the chemical and physical behaviour of the piston ring lubricant in a marine engine cylinder was investigated. To reveal the basic influence of H2SO4 on the lubricant film, the saturated hydrocarbon Squalane (C30H62) was chosen as a simple model oil. The interfacial tension between aqueous H2SO4 (0-98% w/w) and C30H62 was measured between -3 and 165 degrees C to understand droplet formation in the lubricant. Interfacial tension decreases with increasing acid concentration and is temperature dependent. / The wettability of engine parts with corrosive sulphuric acid was characterised by the contact angle. The contact angle of H2SO4 (0-98% w/w) on a grey cast iron cylinder liner material (Wartsila, RT84) and a piston ring chrome-ceramic coating (Federal Mogul Goetze, CKS, empty set960 mm) immersed in C30H62 was measured over a temperature range from 20 to 165 degrees C. In general, larger contact angles were measured under higher temperature conditions and on chrome surfaces. / In addition to the physical measurements, chemical reaction between H2SO4 and C30H62 was observed which influenced the interfacial tension, visual appearance, phase separation and formation of solid matter. The reaction time was found to be faster than the neutralisation times of commercially formulated lubricants. The reaction products were analysed using FTIR spectroscopy and EDX to find oxidation and sulphonation.
2

FTIR lubricant analysis: Concentration of dispersed sulphuric acid

Sautermeister, F.A., Priest, Martin, Fox, M.F. January 2014 (has links)
No / This paper aims to establish the acid concentration of finely dispersed droplets in hydrocarbon oils. Small quantities of aqueous sulphuric acid (H2SO4) were found to be trapped within hydrocarbon shells, making them inaccessible for concentration evaluation by titration. Fourier transform infrared spectroscopy (FTIR) used in the attenuated total reflection mode (ATR; FTIR-ATR) was applied to study the reaction products of squalane, C30H62, and an API Group I base oil with various concentrations of aqueous H2SO4. The absorbance comparison usually used for estimating acid concentrations was found to fail when small quantities of acid are trapped in the reaction product. It was found that the peak shift and changes in absorbance found for various pure aqueous acid concentrations were useful to establish the remaining concentration of the trapped H2SO4. This paper fulfils the identified need to study acid dissociation-dependent peak shifts of H2SO4 to find the acid concentration of finely dispersed droplets in hydrocarbon oils.

Page generated in 0.1343 seconds