• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • 1
  • Tagged with
  • 9
  • 9
  • 5
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

2,2'-Dimercaptodiethyl Sulfide: Metal Complexes and Analytical Applications

Nieboer, Evert 05 1900 (has links)
<p> This thesis is concerned with 2,21 -dimercaptodiethyl sulfide. In particular, the work reported herein deals with the stability of the reagent in both its pure form and in its solutions; the determination of its acid dissociation constants; its reactivity towards metal ions; the nature of its metal complexes with Co(II), Co(III), Ni(II) and Pd(II); and its application as a potentially useful analytical reagent for the spectrophotometric determination of Ni(II) and Pd(II). </p> / Thesis / Master of Science (MSc)
2

Raman spectroscopic and potentiometric studies of acidity level and dissociation of citric acid in aqueous solution

Elbagerma, Mohamed A., Alajtal, Adel I., Edwards, Howell G.M., Azimi, G.H., Verma, K.D., Scowen, Ian J. January 2015 (has links)
No / The dissociation constant is one of the most important characteristics of a pharmaceutical chemical moiety which has to be estimated with accuracy. The development of in-situ speciation methods in solutions with parallel measurements using Raman spectroscopy (molecular) and pH (macroscopic) for the identification, characterization, and quantitative determination of citric acid species in aqueous solution by numerical data treatment using a multiwavelength curve fitting program over a range of pH values is described. As a result, the first, second and third stepwise dissociation constants of citric acid have been evaluated as 3.02±0.06, 4.78±0.06 and 6.02±0.04, respectively. From these data over the pH range 2.38-6.16 an excellent agreement with literature values was achieved.
3

FTIR lubricant analysis: Concentration of dispersed sulphuric acid

Sautermeister, F.A., Priest, Martin, Fox, M.F. January 2014 (has links)
No / This paper aims to establish the acid concentration of finely dispersed droplets in hydrocarbon oils. Small quantities of aqueous sulphuric acid (H2SO4) were found to be trapped within hydrocarbon shells, making them inaccessible for concentration evaluation by titration. Fourier transform infrared spectroscopy (FTIR) used in the attenuated total reflection mode (ATR; FTIR-ATR) was applied to study the reaction products of squalane, C30H62, and an API Group I base oil with various concentrations of aqueous H2SO4. The absorbance comparison usually used for estimating acid concentrations was found to fail when small quantities of acid are trapped in the reaction product. It was found that the peak shift and changes in absorbance found for various pure aqueous acid concentrations were useful to establish the remaining concentration of the trapped H2SO4. This paper fulfils the identified need to study acid dissociation-dependent peak shifts of H2SO4 to find the acid concentration of finely dispersed droplets in hydrocarbon oils.
4

Mitigating the impact of antidrug antibodies against insulin on ELISA assay

Bøwadt, Thea January 2021 (has links)
Diabetes has, in the past three decades, surged immensely. Because of this, new insulin analogues are constantly in the making.  In clinical studies, the presence of antidrug antibodies can prove a challenge when measuring insulin. In order to overcome the interference from antidrug antibody complexes on the total insulin measurement in human serum, several pre-treatment methods on insulin and polyclonal antibodies spiked samples were tried using ELISA analysis. Several different methods were tried, acid dissociation using a glycine buffer with and without ethanol in different concentrations, high ionic strength dissociation using MgCl2, Polyethylene glycol (PEG) and filtration. The best results were found when using the acid dissociation technique. Using glycine promising results were achieved, especially when 20 % ethanol was added to the acid mixture. Pre-treatment using PEG, MgCl2 and filtration was unsuccessful with the methods used. The main goal was reached through the use of glycine with the addition of 20% ethanol for acid dissociation. The proposed method still leaves significant room for optimisation and needs further verification on real patient samples. However, it is a good step in the direction of a global methodology using ELISA to overcome antidrug antibody interference for total insulin measurement in human serum.
5

Quantum Chemical pK<sub>a</sub> Estimation of Carbon Acids, Saturated Alcohols, and Ketones via Quantitative Structure-Activity Relationships

Baldasare, Corey Adam 28 August 2020 (has links)
No description available.
6

Ab Initio Molecular Dynamics Studies of Bronsted Acid-Base Chemistry in Aqueous Solutions

Tummanapelli, Anil Kumar January 2015 (has links) (PDF)
Knowledge of the dissociation constants of the ionizable protons of weak acids in aqueous media is of fundamental importance in many areas of chemistry and biochemistry. The pKa value, or equilibrium dissociation constant, of a molecule determines the relative concentration of its protonated and deprotonated forms at a specified pH and is therefore an important descriptor of its chemical reactivity. Considerable efforts have been devoted to the determination of pKa values by deferent experimental techniques. Although in most cases the determination of pKa values from experimental is straightforward, there are situations where interpretation is difficult and the results ambiguous. It is, therefore, not surprising that the capability to provide accurate estimates of the pKa value has been a central goal in theoretical chemistry and there has been a large effort in developing methodologies for predicting pKa values for a variety of chemical systems by differing quantum chemical techniques. A prediction accuracy within 0.5 pKa units of experiment is the desirable level of accuracy. This is a non-trivial exercise, for an error of 1 kcal/mol in estimates of the free energy value would result in an error of 0.74 pKa units. In this thesis ab initio Car-Parrinello molecular dynamics (CPMD) has been used for investigating the Brϕnsted acid-base chemistry of weak acids in aqueous solution. A key issue in any dissociation event is how the solvating water molecules arrange themselves spatially and dynamically around the neutral and dissociated acid molecule. Ab initio methods have the advantage that all solvent water molecules can, in principle, be con- sidered explicitly. One of the factors that has inhibited the widespread use of ab initio MD methods to study the dissociation reaction is that dissociation of weak acids are rare events that require extremely long simulation times before one is observed. The metady- namics formalism provides a solution to this conundrum by preventing the system from revisiting regions of configuration space where it has been in the past. The formalism allows the system to escape the free-energy minima by biasing the dynamics with a history dependent potential (or force) that acts on select degrees of freedom, referred to as collective variables. The bias potentials, modeled by repulsive inverted Gaussians that are dropped during propagation, drive the system out of any free-energy minima and allow it to explore the configuration space by a relatively quick and efficient sampling. The the- sis deals with a detailed investigation of the Brϕnsted acid-base chemistry of weak acids in aqueous solutions by the CPMD-metadynamics procedure. In Chapter 1, current approaches for the theoretical estimation of pKa values are summarized while in Chapter 2 the simulation methodology and the metadynamics sampling techniques used in thisstudy are described. The potential of the CPMD-metadynamics procedure to provide estimates of the acid dissociation constant (pKa) is explored in Chapter 3, using acetic acid as a test sys- tem. Using the bond-distance dependent coordination number of protons bound to the dissociating carboxylic groups as the collective variable, the free-energy profile for the dissociation reaction of acetic acid in water was computed. Convergence of the free-energy profiles and barriers for the simulations parameters is demonstrated. The free-energy profiles exhibit two distinct minima corresponding to the dissociated and neutral states of the acid and the deference in their values provides the estimate for pKa. The estimated value of pKa for acetic acid from the simulations, 4.80, is in good agreement with the experiment at value of 4.76. It is shown that the good agreement with experiment is a consequence of the cancellation of errors, as the pKa values are computed as the difference in the free energy values at the minima corresponding to the neutral and dissociated state. The chapter further explores the critical factors required for obtaining accurate estimates of the pKa values by the CPMD-metadynamics procedure. It is shown that having water molecules sufficient to complete three hydration shells as well as maintaining water density in the simulation cell as close to unity is important. In Chapter 4, the CPMD-metadynamics procedure described in Chapter-3 has been used to investigate the dissociation of a series of weak organic acids in aqueous solutions. The acids studied were chosen to highlight some of the major factors that influence the dissociation constant. These include the influence of the inductive effect, the stabilization of the dissociated anion by H-bonding as well as the presence of multiple ionizable groups. The acids investigated were aliphatic carboxylic acids, chlorine-substituted carboxylic acids, cid and trans-butenedioic, the isomers of hydroxybenzoic acid and phthalic acids and its isomers. It was found that in each of these examples the CPMD-metadynamics procedure correctly estimates the pKa values, indicating that the formulism is capable of capturing these influences and equally importantly indicating that the cancellation of errors is indeed universal. Further, it is shown that the procedure can provide accurate estimates of the successive pKa values of polypro tic acids as well as the subtle deference in their values for deterrent isomers of the acid molecule. Changes in protonation-deprotonation of amino acid residues in proteins play a key role in many biological processes and pathways. It is shown that CPMD simulations in conjunction with metadynamics calculations of the free energy profile of the protonation- deprotonation reaction can provide estimates of the multiple pKa values of the 20 canonical α-amino acids in aqueous solutions in good agreement with experiment (Chapter 5). The distance-dependent coordination number of the protons bound to the hydroxyl oxygen of the carboxylic and the amine groups is used as the collective variable to explore the free energy profiles of the Brϕnsted acid-base chemistry of amino acids in aqueous solutions. Water molecules, sufficient to complete three hydration shells surrounding the acid molecule were included explicitly in the computation procedure. The method works equally well for amino acids with neutral, acidic and basic side chains and provides estimates of the multiple pKa values with a mean relative error with respect to experimental results, of 0.2 pKa units. The tripeptide Glutathione (GSH) is one of the most abundant peptides and the major repository for non-protein sulfur in both animal and plant cells. It plays a critical role in intracellular oxidative stress management by the reversible formation of glutathione disulfide with the thioldisulfide pair acting as a redox buffer. The state of charge of the ionizable groups of GSH can influences the redox couple and hence the pKa value of the cysteine residue of GSH is critical to its functioning. In Chapter 6, it has been reported that ab initio Car-Parrinello Molecular Dynamics simulations of glutathione solvated by 200 water molecules, all of which are considered in the simulation. It is shown that the free-energy landscape for the protonation - deprotonation reaction of the cysteine residue of GSH computed using metadynamics sampling provides accurate estimates of the pKa and correctly predicts the shift in the dissociation constant values as compared to the isolated cysteine amino acid. The dissociation constants of weak acids are commonly determined from pH-titration curves. For simple acids the determination of the pKa from the titration curves using the Henderson-Hasselbalch equation is relatively straightforward. There are situations, however, especially in polypro tic acids with closely spaced dissociation constants, where titration curves do not exhibit clear inflexion and equivalence stages and consequently the estimation of multiple pKa values from a single titration curve is no longer straightfor- ward resulting in uncertainties in the determined pKa values. In Chapter 7, the multiple dissociation constant of the hexapeptide glutathione disulfide (GSSG) with six ionizable groups and six associated dissociation constants has been investigated. The six pKa values of GSSG were estimated using the CPMD-metadynamics procedure from the free-energy profiles for each dissociation reaction computed using the appropriate collective variable. The six pKa values of GSSG were estimated and the theoretical pH-titration curve was then compared with the experimentally measured pH-titration curve and found to be in excellent agreement. The object of the exercise was to establish whether interpretation of pH-titration curves of complex molecules with multiple ionizable groups could be facilitated using results of ab initio molecular dynamics simulations.
7

Elementary steps in aqueous proton transfer reactions : a first principles molecular dynamics study

Thomas, Vibin 11 1900 (has links)
La nature des acides dans un environnement aqueux est primordiale dans de nombreux aspects de la chimie et de la biologie. La caractéristique principale d'un acide est sa capacité à transférer un proton vers une molécule d'eau ou vers n'importe quelle base, mais ce procédé n'est pas aussi simple qu'il y paraît. Il peut au contraire être extrêmement complexe et dépendre de manière cruciale de la solvatation des différents intermédiaires de réaction impliqués. Cette thèse décrit les études computationnelles basées sur des simulations de dynamique moléculaire ab initio qui ont pour but d'obtenir une description à l'échelle moléculaire des divers procédés de transferts de proton entre acide et bases dans un milieu aqueux. Pour cela, nous avons étudié une serie de système, dont l'acide hydrofluorique aqueux, l'acide trifluoroacétique aqueux, et un système modèle constitué d'un phénol et d'une entité carboxylate reliés entre eux par une molécule d'eau en solution aqueuse. Deux états intermédiaires ont été identifiés pour le transfert d'un proton depuis un acide. Ces intermédiaires apparaissent stabilisés par un motif local de solvatation via des ponts H. Leurs signatures spectroscopiques ont été caractérisées au moyen de la spectroscopie infrarouge, en utilisant le formalisme de la dynamique moléculaire ab initio, qui inclut l'effet quantique nucléaire de manière explicite. Cette étude a aussi identifié trois chemins de réaction élémentaire, qui sont responsable pour le transfert d'un proton d'un acide à une base, ainsi que leurs échelles de temps caractéristiques. Les conclusions tirées de ces études sont discutées dans les détails, au niveau moléculaire, avec une emphase sur les comparaisons entre les résultats théoriques et les mesures expérimentales obtenues dans a littérature ou via des collaborateurs. / The nature of acids in an aqueous environment is fundamental to many aspects of chemistry and biology. The defining feature of an acid is its ability to transfer a proton to water or to any accepting base, but this seemingly simple process can be complex and highly dependent on the solvation involving different reaction intermediate species. This thesis describes computational studies based on first principles molecular dynamics simulations aimed at obtaining molecular-level descriptions of diverse proton transfer process involving acids and bases in liquid water. For that, we have investigated a variety of systems including aqueous hydrofluoric acid, aqueous trifluoroacetic acid and a model system comprising of a phenol and a carboxyate molecule bridged by a water molecule in aqueous solution. Two different intermediate stages of proton transfer from an acid were identified which are found to be stabilized by distinct local H-bond solvation pattern. Their spectroscopic signatures were characterized using infrared spectroscopy computed from first principles molecular dynamics simulations which incorporate nuclear quantum effects explicitly. This study also identified three elementary reaction pathways that are responsible for proton translocation from acid to the base and their characteristic time scales. Conclusions drawn from this study are discussed in molecular detail, highlighting experimental comparisons.
8

Elementary steps in aqueous proton transfer reactions : a first principles molecular dynamics study

Thomas, Vibin 11 1900 (has links)
La nature des acides dans un environnement aqueux est primordiale dans de nombreux aspects de la chimie et de la biologie. La caractéristique principale d'un acide est sa capacité à transférer un proton vers une molécule d'eau ou vers n'importe quelle base, mais ce procédé n'est pas aussi simple qu'il y paraît. Il peut au contraire être extrêmement complexe et dépendre de manière cruciale de la solvatation des différents intermédiaires de réaction impliqués. Cette thèse décrit les études computationnelles basées sur des simulations de dynamique moléculaire ab initio qui ont pour but d'obtenir une description à l'échelle moléculaire des divers procédés de transferts de proton entre acide et bases dans un milieu aqueux. Pour cela, nous avons étudié une serie de système, dont l'acide hydrofluorique aqueux, l'acide trifluoroacétique aqueux, et un système modèle constitué d'un phénol et d'une entité carboxylate reliés entre eux par une molécule d'eau en solution aqueuse. Deux états intermédiaires ont été identifiés pour le transfert d'un proton depuis un acide. Ces intermédiaires apparaissent stabilisés par un motif local de solvatation via des ponts H. Leurs signatures spectroscopiques ont été caractérisées au moyen de la spectroscopie infrarouge, en utilisant le formalisme de la dynamique moléculaire ab initio, qui inclut l'effet quantique nucléaire de manière explicite. Cette étude a aussi identifié trois chemins de réaction élémentaire, qui sont responsable pour le transfert d'un proton d'un acide à une base, ainsi que leurs échelles de temps caractéristiques. Les conclusions tirées de ces études sont discutées dans les détails, au niveau moléculaire, avec une emphase sur les comparaisons entre les résultats théoriques et les mesures expérimentales obtenues dans a littérature ou via des collaborateurs. / The nature of acids in an aqueous environment is fundamental to many aspects of chemistry and biology. The defining feature of an acid is its ability to transfer a proton to water or to any accepting base, but this seemingly simple process can be complex and highly dependent on the solvation involving different reaction intermediate species. This thesis describes computational studies based on first principles molecular dynamics simulations aimed at obtaining molecular-level descriptions of diverse proton transfer process involving acids and bases in liquid water. For that, we have investigated a variety of systems including aqueous hydrofluoric acid, aqueous trifluoroacetic acid and a model system comprising of a phenol and a carboxyate molecule bridged by a water molecule in aqueous solution. Two different intermediate stages of proton transfer from an acid were identified which are found to be stabilized by distinct local H-bond solvation pattern. Their spectroscopic signatures were characterized using infrared spectroscopy computed from first principles molecular dynamics simulations which incorporate nuclear quantum effects explicitly. This study also identified three elementary reaction pathways that are responsible for proton translocation from acid to the base and their characteristic time scales. Conclusions drawn from this study are discussed in molecular detail, highlighting experimental comparisons.
9

Structure-property relationships of dyes as applied to dye-sensitized solar cells

Gong, Yun January 2018 (has links)
This work investigates the correlation of structural and photovoltaic properties of dyes used in dye-sensitized solar cells. Experimental methods, including ultraviolet-visible spectroscopy, fluorescence spectroscopy, cyclic voltammetry and electrochemical impedance spectroscopy are employed to study optical and electrochemical properties of dye molecules. Computational methods, including density functional theory and time-dependent density functional theory, are used to validate and predict the optical and electronic properties of dye molecules, in their isolated state and once embedded into a working electrode device environment that comprises a dye...TiO2 interface. The results chapters begin with the presentation of a series of quinodimethene dyes that are experimentally validated for their photovoltaic application, and associated computational studies reveal that an inner structural factor - a phenyl ring rotation occurring during the optical excitation process - leads to the competitive photovoltaic device performance of these dyes. Carbazole-based dyes are then systematically studied by computation, especially considering charge transfer paths and binding modes of these dyes on a titania surface. The theoretical models for the basic building block of this chemical family of dyes, known as MK-44, successfully support and explain structural discoveries from X-ray diffraction and reflectometry that impact of their function. A benzothiadiazole-based dye, RK-1, is then systematically studied by both experimental and computational methods, and the results show that the π-bridge composed of thiophene, benzothiadiazole and benzene rings leads to excellent charge separation; and the rotation of these rings during the optical excitation process may well be consistent with the fluorescence spectrum. Finally, the well-known ruthenium-based dyes are theoretically studied to determine the properties of different ligands connected to the metal core of the complex. Conformations with different NCS ligands are calculated in terms of energy and explain well the corresponding results from X-ray diffraction. Acid-base properties of carboxyl groups connected to pyridine ligands in N3 and N749 are theoretically calculated based on thermodynamics and density functional theory. Implicit and explicit models are both adopted to predict these acid dissociative constant values, which are generally in a good agreement with the reported experimental data. The thesis concludes with conclusions and a future outlook.

Page generated in 0.137 seconds