• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2817
  • 1046
  • 507
  • 265
  • 221
  • 130
  • 71
  • 71
  • 33
  • 15
  • 15
  • 13
  • 12
  • 11
  • 11
  • Tagged with
  • 6637
  • 2410
  • 1760
  • 1006
  • 998
  • 906
  • 699
  • 694
  • 693
  • 644
  • 611
  • 582
  • 564
  • 531
  • 508
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
471

Using a magnetic force microscope to design nanomagnetic systems

Rawlings, Colin Donald January 2013 (has links)
No description available.
472

Probing protein-lipid interactions using atomic force microscopy

Suresh, Swetha January 2011 (has links)
No description available.
473

Investigation of plant tissue by environmental scanning electron microscopy

Zheng, Tao January 2010 (has links)
No description available.
474

Complex phenomenology of model catalytic systems : O/Cu{311}, CH₃S-/Au{111}, and S/Au{111} surfaces studied by STM

Ross, Mary Margaret January 2010 (has links)
No description available.
475

The preparation and study of copper mill products using the techniques of ore microscopy and statistical analysis

Williams, Lee Roy, 1929- January 1963 (has links)
No description available.
476

Atomic Force Microscopy Study of Endoglucanases and Cellobiohydrolases on Native Cellulose Films

Quirk, Amanda 20 March 2012 (has links)
Atomic force microscopy was used to image the action of cellulolytic enzymes in situ on never-dried native cellulose films. Cellomonas fimi, CenA was used as a model enzyme for proof of concept experiments and for the identification of different enzyme action on different cellulose structures. Inactive and active Trichoderma reesei enzymes EGI and CBHI were studied to disentangle the action of the cellulose binding domain from the catalytic domain. A novel procedure, volume analysis, was developed to quantify changes in cellulose fibers as a result of this action. Volume analysis was used to compare fibers in different experiments (with different structural features and enzymes) regardless of where the change in the fiber occurred. The site-specific nature of cellulose-enzyme interactions is accessible using this analysis technique. Additionally, the reported volume change reflects a change in mass that is of interest for industrial purposes. From inactive CBHI action there was no distinguishable change between enzyme action on defect or crystalline regions of the cellulose fiber. From the active enzyme results a quantifiable degradation event was measured. Digestion was initially quick then after one hour the volume plateaued. The crystalline cellulose region plateaued at -20 ± 1% and the defect region at -31 ± 2%. The inactive EGI enzyme was found to have significant non-hydrolytic action on insoluble cellulose fibers. There was more significant swelling effect on the defect than the crystalline regions of the cellulose fiber. From the active EGI results a quantifiable degradation event was measured followed by swelling events. Degradation was initially quick with the total mass loss occurring within the first hour of the experiment. The volume then increased as the enzyme induced swelling of the fiber structure. The extent of degradation and swelling is structure limited with more disordered regions showing larger decreases in volume and predominantly crystalline regions showing mainly swelling events.
477

Ballistic electron emission microscopy of magnetic thin films : simulations and techniques

Handorf, Thomas 05 1900 (has links)
No description available.
478

Live Cell Imaging of CEACAM1 Dynamics and Self-association during Bacterial Binding

Downie, Kelsey Jean 22 November 2013 (has links)
The carcinoembryonic antigen-related cellular adhesion molecule 1 (CEACAM1) is a human receptor that facilitates adhesion with neighbouring cells, as well as with certain pathogens. CEACAM1 at the cell surface exists as a mixture of monomers and dimers in a heterogeneous distribution that is thought to regulate the balance of its functions, including those associated with pathogen binding. We used live cell fluorescence and homogeneous Förster resonance energy transfer (homo-FRET) microscopy on a combined total internal reflection fluorescence polarization (TIRFPM) confocal microscopy platform to investigate the distribution, dynamics, and monomer-dimer equilibrium of CEACAM1-4L-EYFP on live cells that were parachuted onto surfaces coated with CEACAM1-binding Neisseria gonorrhoea. Both CEACAM1-4L-EYFP and a monomeric mutant form of the receptor are rapidly recruited to bacteria and lead to downstream effector recruitment. Homo-FRET data indicate that wild-type CEACAM1-4L-EYFP was predominantly monomeric at bacterial contact sites. Preferential monomeric binding during bacterial adhesion controls the infection process.
479

Cryo-electron microscopy of SERCA interacting with oligomeric phospholamban and oligomeric sarcolipin

Glaves, John Paul J Unknown Date
No description available.
480

Mesophase Formation in Heavy Oil

Bagheri, Seyed Reza Unknown Date
No description available.

Page generated in 0.0311 seconds