Spelling suggestions: "subject:"amidohydrolase""
1 |
Caracterização bioquímica e biofísica da Celobiohidrolase II do fungo Trichoderma harzianum IOC3844 produzida por expressão homóloga / Biochemical and biophysical characterization of cellobiohydrolase II from Trichoderma harzianum IOC 3844 produced by homologous expressionVoltatodio, Maria Luiza 30 July 2012 (has links)
O esgotamento das reservas, especialmente do petróleo mais fino, aliado à crescente demanda energética e à necessidade inadiável de reduzir as emissões de carbono para a atmosfera, sinalizam para a necessidade da busca de novas fontes de energia renováveis e limpas. As preocupações com o aquecimento global têm feito crescer o interesse mundial pelos biocombustíveis. O novo conceito de biocombustíveis de segunda geração corresponde à produção de etanol combustível a partir de biomassa lignocelulósica como matéria-prima. No entanto, para tornar possível a utilização da biomassa é necessária a conversão das moléculas constituintes da parede celular em açúcares fermentáveis. A tecnologia mais promissora para a conversão dessa biomassa lignocelulósica à etanol combustível é com base na hidrólise enzimática da celulose usando celulases. Alguns microrganismos como o fungo Trichoderma SSP. secretam um eficiente complexo enzimático de celulases. Tendo as celobiohidrolases, elevada importância na hidrólise primária da celulose, o objetivo desse trabalho foi realizar a caracterização bioquímica e biofísica a celobiohidrolase II (CBHII) do complexo de celulases do fungo filamentoso Trichoderma harzianum IOC 3844. A enzima depois de purificada mostrou uma melhor atividade contra o substrato pNPC a 60°C em pH 4,8. Estudos de eletroforese capilar mostraram apenas moléculas com uma unidade de glicose para um substrato simples inicial contendo 5 glicoses. Análises de dicroísmo circular mostraram um padrão de estrutura secundária predominante em alfa hélice, e na análise da estrutura terciária, o espectro de emissão da CBHII mostrou um comprimento de onda de fluorescência máxima a 333nm em pH5,0, indicando que os triptofanos estão parcialmente expostos ao solvente. Ensaios utilizando a técnica de espalhamento de luz a baixo ângulo, permitiram a geração de um modelo tridimensional o qual mostrou-se domínios globulares unidos por um linker, e as posições relativas entre eles, demonstrando grande similaridade com enzimas CBHII já descritas na literatura, e sendo assim, de grande interesse biotecnológico para hidrólises de biomassas. / The depletion of reserves, especially of refined oil , with increased energy demands and the urgent need to reduce the carbon emissions on the atmosphere, signals the necessity to search for new sources of energy renewable and clean. Concerns about global warming have led to an increased world interest in biofuels. The new concept of second generation biofuels corresponds to fuel ethanol production from biomass lignocellulosic feedstock. However, to make possible the use of biomass is necessary the conversion of cell-wall molecules into fermentable sugars. The most promising technology for the conversion of lignocellulosic biomass to ethanol fuel is based on the enzymatic degradation of cellulose using cellulase. Some microorganisms such Trichoderma ssp. secretes an efficient enzymatic complex of cellulase. Since the cellobiohydrolases are highly importance in the primary hydrolysis of cellulose, the objective of this study was to perform the biochemical and biophysical characterization of cellobiohydrolase II (CBHII) present into the cellulase complex from the Trichoderma harzianum IOC 3844. The enzyme showed its better activity against pNPC at 60°C and pH 4,8. Capillary electrophoresis showed only glucose molecules as the final product of C5 oligosaccharide hydrolysis. Circular dichroism analysis showed a pattern of secondary structure mainly composed of alpha helix, and the tertiary structure analysis by the emission spectrum of the CBHII showed a wavelength of maximum fluorescence at 33nm at pH 5, indicating that the tryptophans are exposed to solvent. The three dimensional model generated by SAXS showed a structure with two globular domains joined by a linker, and the relative positions among them exhibited great similarity with CBHII described on the literature, and thus, presenting a great biotechnological interest for hydrolysis of biomass.
|
2 |
Atomic Force Microscopy Study of Endoglucanases and Cellobiohydrolases on Native Cellulose FilmsQuirk, Amanda 20 March 2012 (has links)
Atomic force microscopy was used to image the action of cellulolytic enzymes in situ on never-dried native cellulose films. Cellomonas fimi, CenA was used as a model enzyme for proof of concept experiments and for the identification of different enzyme action on different cellulose structures. Inactive and active Trichoderma reesei enzymes EGI and CBHI were studied to disentangle the action of the cellulose binding domain from the catalytic domain.
A novel procedure, volume analysis, was developed to quantify changes in cellulose fibers as a result of this action. Volume analysis was used to compare fibers in different experiments (with different structural features and enzymes) regardless of where the change in the fiber occurred. The site-specific nature of cellulose-enzyme interactions is accessible using this analysis technique. Additionally, the reported volume change reflects a change in mass that is of interest for industrial purposes.
From inactive CBHI action there was no distinguishable change between enzyme action on defect or crystalline regions of the cellulose fiber. From the active enzyme results a quantifiable degradation event was measured. Digestion was initially quick then after one hour the volume plateaued. The crystalline cellulose region plateaued at -20 ± 1% and the defect region at -31 ± 2%.
The inactive EGI enzyme was found to have significant non-hydrolytic action on insoluble cellulose fibers. There was more significant swelling effect on the defect than the crystalline regions of the cellulose fiber. From the active EGI results a quantifiable degradation event was measured followed by swelling events. Degradation was initially quick with the total mass loss occurring within the first hour of the experiment. The volume then increased as the enzyme induced swelling of the fiber structure. The extent of degradation and swelling is structure limited with more disordered regions showing larger decreases in volume and predominantly crystalline regions showing mainly swelling events.
|
3 |
Analysis of Enzymatic Degradation of Cellulose Microfibrils by Quantitative Surface Plasmon Resonance ImagingReiter, Kyle 14 December 2012 (has links)
Cellulose is the most plentiful biopolymer on the planet, and as such, is a large potential energy source. Converting cellulose into ethanol first requires the disruption of the crystallinity of cellulose fibers and subsequent hydrolysis into glucose. The glucose can then be fermented, producing ethanol. The conversion of cellulose fibers to glucose is an energy intensive and costly step, which is a barrier to industrial production of cellulosic ethanol. The use of enzymes to facilitate this conversion is a promising approach. In the present study, the action of individual enzymes and combinations of enzymes from the Hypocrea jecorina secretome on bacterial cellulose fibers has been studied, to better understand their individual and synergistic action.
I have used a custom Surface Plasmon Resonance imaging (SPRi) device to measure changes in the thickness of cellulose fiber coverage of a thioglucose-functionalized gold substrate upon exposure to enzymes. The cellulose fibers were deposited using a Langmuir-Blodgett technique, resulting in non-uniform cellulose coverage of the substrate. By defining local Regions of Interest (ROIs) of the cellulose-covered gold film, and by measuring the SPR curves at elevated temperature for the ROIs as a function of time, we are able to determine the rate and extent of degradation of the cellulose fibers within individual ROIs. We have fit the change in SPR angle over time after exposure to enzyme to an exponential decay function that allows us to determine the average time constant of action of these enzymes on the deposited cellulose fibers.
We have used the above procedure to measure the average time constants of action and the average degradation fraction (the change in average thickness divided by the initial average thickness) of cellulose fibers exposed to CBH-1, CBH-2, and EG-1, as well as combinations of these enzymes. We have measured an increase in the average degradation fraction and a decrease in the average time constants of action for cellulose fibers exposed to 23 μg/mL CBH-2 compared to fibers exposed to the same concentration of CBH-1. Additionally, for concurrent exposure of CBH-1 and EG-1 (with individual concentrations of 23 μg/mL), as well as concurrent introduction of CBH-1, CBH-2 and EG-1, we observed increases in the average degradation fraction and decreases in average time constants relative to the values measured for the individual enzymes. These measurements allow us to determine the relative activity of these enzymes and they demonstrate cooperativity and complementarity of action of the different enzymes.
|
4 |
Hydrolytic and oxidative mechanisms in cellulose degradation /Nutt, Anu, January 2006 (has links)
Diss. (sammanfattning) Uppsala : Uppsala universitet, 2006. / Härtill 5 uppsatser.
|
5 |
Caracterização bioquímica e biofísica da Celobiohidrolase II do fungo Trichoderma harzianum IOC3844 produzida por expressão homóloga / Biochemical and biophysical characterization of cellobiohydrolase II from Trichoderma harzianum IOC 3844 produced by homologous expressionMaria Luiza Voltatodio 30 July 2012 (has links)
O esgotamento das reservas, especialmente do petróleo mais fino, aliado à crescente demanda energética e à necessidade inadiável de reduzir as emissões de carbono para a atmosfera, sinalizam para a necessidade da busca de novas fontes de energia renováveis e limpas. As preocupações com o aquecimento global têm feito crescer o interesse mundial pelos biocombustíveis. O novo conceito de biocombustíveis de segunda geração corresponde à produção de etanol combustível a partir de biomassa lignocelulósica como matéria-prima. No entanto, para tornar possível a utilização da biomassa é necessária a conversão das moléculas constituintes da parede celular em açúcares fermentáveis. A tecnologia mais promissora para a conversão dessa biomassa lignocelulósica à etanol combustível é com base na hidrólise enzimática da celulose usando celulases. Alguns microrganismos como o fungo Trichoderma SSP. secretam um eficiente complexo enzimático de celulases. Tendo as celobiohidrolases, elevada importância na hidrólise primária da celulose, o objetivo desse trabalho foi realizar a caracterização bioquímica e biofísica a celobiohidrolase II (CBHII) do complexo de celulases do fungo filamentoso Trichoderma harzianum IOC 3844. A enzima depois de purificada mostrou uma melhor atividade contra o substrato pNPC a 60°C em pH 4,8. Estudos de eletroforese capilar mostraram apenas moléculas com uma unidade de glicose para um substrato simples inicial contendo 5 glicoses. Análises de dicroísmo circular mostraram um padrão de estrutura secundária predominante em alfa hélice, e na análise da estrutura terciária, o espectro de emissão da CBHII mostrou um comprimento de onda de fluorescência máxima a 333nm em pH5,0, indicando que os triptofanos estão parcialmente expostos ao solvente. Ensaios utilizando a técnica de espalhamento de luz a baixo ângulo, permitiram a geração de um modelo tridimensional o qual mostrou-se domínios globulares unidos por um linker, e as posições relativas entre eles, demonstrando grande similaridade com enzimas CBHII já descritas na literatura, e sendo assim, de grande interesse biotecnológico para hidrólises de biomassas. / The depletion of reserves, especially of refined oil , with increased energy demands and the urgent need to reduce the carbon emissions on the atmosphere, signals the necessity to search for new sources of energy renewable and clean. Concerns about global warming have led to an increased world interest in biofuels. The new concept of second generation biofuels corresponds to fuel ethanol production from biomass lignocellulosic feedstock. However, to make possible the use of biomass is necessary the conversion of cell-wall molecules into fermentable sugars. The most promising technology for the conversion of lignocellulosic biomass to ethanol fuel is based on the enzymatic degradation of cellulose using cellulase. Some microorganisms such Trichoderma ssp. secretes an efficient enzymatic complex of cellulase. Since the cellobiohydrolases are highly importance in the primary hydrolysis of cellulose, the objective of this study was to perform the biochemical and biophysical characterization of cellobiohydrolase II (CBHII) present into the cellulase complex from the Trichoderma harzianum IOC 3844. The enzyme showed its better activity against pNPC at 60°C and pH 4,8. Capillary electrophoresis showed only glucose molecules as the final product of C5 oligosaccharide hydrolysis. Circular dichroism analysis showed a pattern of secondary structure mainly composed of alpha helix, and the tertiary structure analysis by the emission spectrum of the CBHII showed a wavelength of maximum fluorescence at 33nm at pH 5, indicating that the tryptophans are exposed to solvent. The three dimensional model generated by SAXS showed a structure with two globular domains joined by a linker, and the relative positions among them exhibited great similarity with CBHII described on the literature, and thus, presenting a great biotechnological interest for hydrolysis of biomass.
|
6 |
Purification and Characterization of Recombinant Cel7A From Maize SeedHood, Nathan C., Hood, Kendall R., Woodard, Susan L., Devaiah, Shivakumar P., Jeoh, Tina, Wilken, Lisa, Nikolov, Zivko, Egelkrout, Erin, Howard, John A., Hood, Elizabeth E. 01 January 2014 (has links)
The corn grain biofactory was used to produce Cel7A, an exo-cellulase (cellobiohydrolase I) from Hypocrea jecorina. The enzymatic activity on small molecule substrates was equivalent to its fungal counterpart. The corn grain-derived enzyme is glycosylated and 6 kDa smaller than the native fungal protein, likely due to more sugars added in the glycosylation of the fungal enzyme. Our data suggest that corn seed-derived cellobiohydrolase (CBH) I performs as well as or better than its fungal counterpart in releasing sugars from complex substrates such as pre-treated corn stover or wood. This recombinant protein product can enter and expand current reagent enzyme markets as well as create new markets in textile or pulp processing. The purified protein is now available commercially.
|
7 |
Hydrolytic and Oxidative Mechanisms Involved in Cellulose DegradationNutt, Anu January 2006 (has links)
<p>The enzymatic degradation of cellulose is an important process in nature. This thesis has focused on the degradation of cellulose by enzymes from two cellulose-degrading fungi, <i>Hypocrea jecorina</i> and <i>Phanerochaete chrysosporium</i>, including both the action of the individual enzymes and their synergistic interplay. </p><p>The end-preference of cellobiohydrolases on crystalline cellulose was studied. Cellobiohydrolases belonging to glycosyl hydrolase (GH) family 7 were found to hydrolyse cellulose processively, starting from the reducing end of the cellulose chain. End-labelled cellulose can serve as a tool for functional classification of cellulases.</p><p>The synergy mechanism between endoglucanases and cellobiohydrolases was studied using substrates with different physical properties derived from bacterial cellulose. A new mechanism for synergism between endo- and exoacting enzymes was proposed whereby endoglucanases, in addition to creating nicks in amorphous parts of cellulose, thereby making new starting-points for processively acting cellobiohydrolases, also “polish” the cellulose surface by removing shorter chains from cellulose surface.</p><p>A new small endoglucanase belonging to the GH12 family was isolated and characterised. The proposed role of this enzyme is to make the cellulose in wood more accessible to other cellulases.</p><p>Oxygen conversion by cellobiose dehydrogenase was studied. Hydrogen peroxide produced by cellobiose dehydrogenase can be decomposed even by traces of certain metal ions into a hydroxyl radical and a hydroxyl ion. As an example, reduced metal ions will be continuously regenerated by cellobiose dehydrogenase, which thus stimulates the degradation.</p><p>Interactions between GH7 family cellobiohydrolases and o-nitrophenyl cellobioside were studied by fluorescence spectroscopy and kinetic tests. o-nitrophenyl cellobioside was used as indicator ligand to determine the dissociation constants for cellobiose binding to catalytically inactive Cel7A mutants by displacement binding experiments.</p>
|
8 |
Hydrolytic and Oxidative Mechanisms Involved in Cellulose DegradationNutt, Anu January 2006 (has links)
The enzymatic degradation of cellulose is an important process in nature. This thesis has focused on the degradation of cellulose by enzymes from two cellulose-degrading fungi, Hypocrea jecorina and Phanerochaete chrysosporium, including both the action of the individual enzymes and their synergistic interplay. The end-preference of cellobiohydrolases on crystalline cellulose was studied. Cellobiohydrolases belonging to glycosyl hydrolase (GH) family 7 were found to hydrolyse cellulose processively, starting from the reducing end of the cellulose chain. End-labelled cellulose can serve as a tool for functional classification of cellulases. The synergy mechanism between endoglucanases and cellobiohydrolases was studied using substrates with different physical properties derived from bacterial cellulose. A new mechanism for synergism between endo- and exoacting enzymes was proposed whereby endoglucanases, in addition to creating nicks in amorphous parts of cellulose, thereby making new starting-points for processively acting cellobiohydrolases, also “polish” the cellulose surface by removing shorter chains from cellulose surface. A new small endoglucanase belonging to the GH12 family was isolated and characterised. The proposed role of this enzyme is to make the cellulose in wood more accessible to other cellulases. Oxygen conversion by cellobiose dehydrogenase was studied. Hydrogen peroxide produced by cellobiose dehydrogenase can be decomposed even by traces of certain metal ions into a hydroxyl radical and a hydroxyl ion. As an example, reduced metal ions will be continuously regenerated by cellobiose dehydrogenase, which thus stimulates the degradation. Interactions between GH7 family cellobiohydrolases and o-nitrophenyl cellobioside were studied by fluorescence spectroscopy and kinetic tests. o-nitrophenyl cellobioside was used as indicator ligand to determine the dissociation constants for cellobiose binding to catalytically inactive Cel7A mutants by displacement binding experiments.
|
9 |
Evaluation of high recombinant protein secretion phenotype of saccharomyces cerevisiae segregantSibanda, Ntsako January 2016 (has links)
Thesis (MSc. (Biochemistry)) --University of Limpopo, 2016 / The ever increasing cost of fossil-based fuels and the accompanying concerns about their impact on the environment is driving research towards clean and renewable sources of energy. Bioethanol has the potential to be a replacement for liquid transportation fuels. In addition to its near zero nett carbon dioxide emissions, bio-ethanol has a high energy to weight ratio and can easily be stored in high volumes. To produce bioethanol at economically competitive prices, the major cost in the production process needs to be addressed. The addition of enzymes to hydrolyse the lignocellulosic fraction of the agricultural waste to simple sugars is considered to be the major contributor to high production cost. A consolidated bioprocess (CBP) which ideally combines all the steps that are currently accomplished in different reactors by different microorganisms into a single process step would be a more economically feasible solution. In this study the potential of yeast hybridization with a CBP approach was used. In order to evaluate the reduction or elimination of the addition of cellulolytic and hemi-cellulolytic enzymes to the ethanol production process.
High cellobiohydrolase I secreting progeny from hybridization of an industrial bioethanol yeast strain, S. cerevisiae M0341, and a laboratory strain S. cerevisiae Y294 were isolated. In order to determine if this characteristic was specific to cellobiohydrolase I secretion, these strains were evaluated for their ability to secrete other relevant recombinant hydrolase enzymes for CBP-based ethanol production.
A total of seven S. cerevisiae strains were chosen from a progeny pool of 28 supersecreting hybrids and reconstructed to create two parental strains; S. cerevisiae M0341 and S. cerevisiae Y294, together with their hybrid segregants strains H3M1, H3M28, H3H29, H3K27 and H3O23. Three episomal plasmids namely pNS201, pNS202 and pNS203 were constructed; these plasmids together with two already available plasmids, namely pRDH166 and pRDH182 contained genes for different reporter enzymes, namely β-glucosidase I, xylanase II, endoglucanase lll, cellobiohydrolase l and α-glucuronidase. To allow for selection of the episomal plasmids, homologous recombination was used to replace the functional URA3 gene of selected strains, with the non-functional ura3 allele from the Y294 strain. Enzyme activity was used as an indicator of the amount of enzyme secreted. Fermentation studies in a bioreactor were used to determine the metabolic burden imposed on the segregants expressing the cellobiohydrolase at high levels. In addition all segregants were tested for resistance to inhibitors commonly found in pre-treated lignocellulosic material. The M28_Cel7A was found to be the best secretor of Cel7A (Cellobiohydrolase l); however it seems as though this phenomenon imposes a significant metabolic burden on the yeast. The supersecreting hybrid strains cannot tolerate lignocellulosic inhibitors at concentrations commonly produced during pretreatment / The National Research Foundation - Renewable Energy Scholarship (NRF-RSES)
|
10 |
Ingénierie des xylanases de Penicillium funiculosum IMI 378536 : amélioration de la robustesse de l'activité xylanolytique dans la préparation commerciale Rovabio Excel™ / Engineering of Penicillium funiculosum IMI 378536 xylanases : improving the robustness of the xylanolytic activity in the commercial preparation Rovabio Excel™Texier, Helene 12 October 2012 (has links)
Le Rovabio Excel ™ est un cocktail enzymatique complexe sécrété par le champignon filamenteux Penicillium funiculosum. La société ADISSEO commercialise cet additif alimentaire destiné à la nutrition animale car les principales enzymes qui le constituent dégradent les polymères contenus dans les céréales, tels que les polysaccharides non amylacés. Ainsi, le Rovabio Excel™ permet d’améliorer la digestibilité et d’augmenter la valeur nutritionnelle des matières premières agricoles en réduisant la viscosité du bol alimentaire des animaux. Dans le but d’augmenter sa compétitivité, ADISSEO a fait conduire des études sur cette solution pour la caractériser biochimiquement et optimiser son potentiel xylanolytique.Ces travaux de thèse s’inscrivent dans ces projets industriels et ont poursuivi deux objectifs distincts. Le premier correspondait à l’augmentation de la thermostabilité de la protéine XynB du Rovabio Excel™, pour lui permettre de résister à la granulation. Le second concernait XynA, la protéine majoritaire de la solution multienzymatique, qui a été caractérisée biochimiquement. Les premiers résultats de caractérisation biochimique de XynA ont montré que la protéine était 100 fois plus active sur β-1,4-glucane que sur xylane. Des tests complémentaires sur pNP-cellobiose et pNP-β-D-Lactopyranose ont révélé que XynA était 5,2 fois plus active sur pNP-cellobiose et possédait une activité « exo ». Enfin, l’analyse des produits d’hydrolyse d’oligosaccharides composés de 2 à 5 unités de glucose a confirmé que la protéine XynA était une cellobiohydrolase de type I, très sensible à l’inhibition par le cellobiose (IC50 - C2 = 17,7 µM). L’étude la thermostabilité de XynB a confirmé que cette protéine n’était pas naturellement thermostable. Les résultats des travaux d’ingénierie avec l’ajout d’un pont disulfure pour rigidifier la structure 3D de la protéine n’ont pas été probants. En revanche, la création de protéines chimères à partir de protéines plus thermostables (TfxA de Thermomonospora fusca et XynII de Trichoderma reesei) a permis d’améliorer la stabilité thermodynamique de XynB avec des Tm augmentés de plus de 10°C / The Rovabio Excel™ is a complex enzymatic cocktail secreted by the filamentous fungus Penicillium funiculosum. The ADISSEO company sells it as food additive for animal feed because the main enzymes degrade polymers contained in grains, such as non-starch polysaccharides. Thus, the Rovabio Excel™ improves the digestibility and increases the nutritional value of agricultural raw materials by reducing the viscosity of the diet of animals. In order to increase its competitiveness, ADISSEO did conduct studies on this solution to characterize it biochemically and maximize its xylanolytic potential.This thesis takes part of this industrial project and have pursued two distinct objectives. The first corresponds to the increase in the thermostability of the protein XynB from the Rovabio Excel™, to enable it to resist at the granulation process. The second was XynA, the major protein of the multienzyme solution, which was characterized biochemically.Initial results of biochemical characterization of XynA showed that the protein was 100 times more active on β-1,4-glucan on xylan. Additional tests on pNP-cellobiose and pNP-β-D-Lactopyranose revealed that XynA was 5.2 times more active on pNP-cellobiose and possess an "exo-acting" activity. Finally, the analysis of products from oligosaccharides hydrolysis, composed of 2 to 5 units of glucose, confirmed that the protein XynA was a type I cellobiohydrolase, very sensitive to inhibition by cellobiose (IC50-C2 = 17.7 µM).The thermostability of XynB study has confirmed that this protein was not thermostable naturally. The results of the engineering work with the addition of a disulfide bridge to rigidify the 3D structure of the protein were not conclusive. However, the creation of chimeric proteins with more thermostable proteins (TfxA from Thermomonospora fusca and XynII from Trichoderma reesei) has improved the thermodynamic stability of XynB with Tm increased by more than 10°C
|
Page generated in 0.0516 seconds