• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 233
  • 153
  • 25
  • 20
  • 7
  • 5
  • 3
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 593
  • 593
  • 187
  • 131
  • 127
  • 125
  • 65
  • 52
  • 51
  • 46
  • 44
  • 42
  • 38
  • 35
  • 34
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
121

The effect of the f-component of the pseudopotential on selected properties of 5d transition metal systems

January 2008 (has links)
Cohesive energies, bulk moduli, and equilibrium lattice constants have been calculated for the 5d transition atoms (Hf, Ta, W, Re, Os, Ir and Pt) in face–centred cubic crystal lattices. We have used the ab initio pseudopotential method for the total energy calculations within the local density approximation. Two calculations have been performed for each element, one using only the s, p and d angular momentum components and another including the s, p and d components as well as the unoccupied 5f orbital in the ionic pseudopotentials. The pseudo–wave functions and charge densities of the valence electrons have been represented by a basis of plane waves. For the 5d metals the changes in the electronic structure of the solid are small and they produce small changes in the bulk properties. / Thesis (M.Sc.) - University of KwaZulu-Natal, Pietermaritzburg, 2008.
122

Mixed methods Analysis of Undergraduate Quantum Mechanics: An Exploratory Case Study

Oakley, Christopher A. 18 December 2013 (has links)
One key goal of Physics Education Research is providing research-based instructional techniques and tools to help assess the complex learning goals associated with a mature understanding of physics. Characterizing faculty expectations is important to produce a comprehensive understanding of knowledge students should acquire before and during a quantum mechanics course (QMC). Semi-structured interviews have been conducted with faculty members and students entering a QMC in the Physics Program at a Large Public Research University (LPRU) in the Southeast. The interviews examine perspectives of different evaluation techniques, ideal preparation, course content, and expected conceptual models of students. A post-course survey was offered to the students that took the QMC in the Fall of 2012 and to those who completed the course in the past three years. The survey addressed similar questions on evaluation, course content, and preparation. Using Classical Content Analysis and Key-Words-In-Context coding methods, contradictions and similarities within and between faculty and student populations are presented. These results are presented in an effort to highlight predictors for success in the QMC, identify “common-core” perceptions, and strengthen course evaluation. In all data, findings suggest that student perceptions shift towards those of faculty over the course of the QMC. Evaluation data indicate that on average the faculty members, like students, are open to a varied array of evaluation techniques, if it is within the goals of the course and does not interfere with other faculty responsibilities. In perceptions of preparation and course content, faculty have a uniform perspective of what should be prerequisite, and the student survey data strongly recommend that the second semester of Linear Algebra offered at the LPRU will help with the mathematical complexities of the QMC. Through triangulation of qualitative and quantitative results contradictions of preparation and content are exhibited through multiple media for the use course content such as the Hamiltonian.
123

Optical spectroscopy of two-dimensional hole systems in the quantum limit

Townsley, Christopher Mark January 1999 (has links)
No description available.
124

Quantum information theory and the foundations of quantum mechanics

Timpson, Christopher Gordon January 2004 (has links)
This thesis is a contribution to the debate on the implications of quantum information theory for the foundational problems of quantum mechanics. In Part I an attempt is made to shed some light on the nature of information and quantum information theory. It is emphasized that the everyday notion of information is to be firmly distinguished from the technical notions arising in information theory; however it is maintained that in both settings ‘information’ functions as an abstract noun, hence does not refer to a particular or substance. The popular claim ‘Information is Physical’ is assessed and it is argued that this proposition faces a destructive dilemma. Accordingly, the slogan may not be understood as an ontological claim, but at best, as a methodological one. A novel argument is provided against Dretske’s (1981) attempt to base a semantic notion of information on ideas from information theory. The function of various measures of information content for quantum systems is explored and the applicability of the Shannon information in the quantum context maintained against the challenge of Brukner and Zeilinger (2001). The phenomenon of quantum teleportation is then explored as a case study serving to emphasize the value of recognising the logical status of ‘information’ as an abstract noun: it is argued that the conceptual puzzles often associated with this phenomenon result from the familiar error of hypostatizing an abstract noun. The approach of Deutsch and Hayden (2000) to the questions of locality and information flow in entangled quantum systems is assessed. It is suggested that the approach suffers from an equivocation between a conservative and an ontological reading; and the differing implications of each is examined. Some results are presented on the characterization of entanglement in the Deutsch-Hayden formalism. Part I closes with a discussion of some philosophical aspects of quantum computation. In particular, it is argued against Deutsch that the Church-Turing hypothesis is not underwritten by a physical principle, the Turing Principle. Some general morals are drawn concerning the nature of quantum information theory. In Part II, attention turns to the question of the implications of quantum information theory for our understanding of the meaning of the quantum formalism. Following some preliminary remarks, two particular information-theoretic approaches to the foundations of quantum mechanics are assessed in detail. It is argued that Zeilinger’s (1999) Foundational Principle is unsuccessful as a foundational principle for quantum mechanics. The information-theoretic characterization theorem of Clifton, Bub and Halvorson (2003) is assessed more favourably, but the generality of the approach is questioned and it is argued that the implications of the theorem for the traditional foundational problems in quantum mechanics remains obscure.
125

An Investigation of the Influence of Initial Conditions on Rayleigh-Taylor Mixing

Schilling, O Mueschke, N J January 2004 (has links)
Thesis (M.S.); Submitted to the Univ. of Texas A and M, College Station, TX (US); 4 Oct 2004. / Published through the Information Bridge: DOE Scientific and Technical Information. "UCRL-TH-208163" Schilling, O; Mueschke, N J. 10/04/2004. Report is also available in paper and microfiche from NTIS.
126

Configuration mixing of quark states in nucleons and other baryons in the MIT bag model /

Hazelton, William Donald. January 1997 (has links)
Thesis (Ph. D.)--University of Washington, 1997. / Vita. Includes bibliographical references (p. [100]-109).
127

Circular polarization of gamma rays from capture of polarized thermal neutrons

Stecher-Rasmussen, F. January 1971 (has links)
Thesis--Rijksuniversiteit te Utrecht. / Vita. Summary also in Dutch. Includes bibliographical references. Also issued in print.
128

Circular polarization of gamma rays from capture of polarized thermal neutrons

Stecher-Rasmussen, F. January 1971 (has links)
Thesis--Rijksuniversiteit te Utrecht. / Vita. Summary also in Dutch. eContent provider-neutral record in process. Description based on print version record. Includes bibliographical references.
129

Two Fermion bound state equation using light front Tamm-Dancoff field theory in 3+1 dimensions.

Wort, Philip M. (Philip Michael), Carleton University. Dissertation. Physics. January 1992 (has links)
Thesis (Ph. D.)--Carleton University, 1992. / Also available in electronic format on the Internet.
130

Potenciais, modulares e novas soluções em mecânica quântica supersimétrica / Modular potentials and new solutions in supersymmetric quantum mechanics

Osvaldo Negrini Neto 09 April 2014 (has links)
Neste trabalho estudamos uma nova classe de superpotenciais em mecânica quântica supersimétrica, os quais denominamos de modulares, por serem funções do módulo da coordenada x. O superpotencial de partida proposto é da forma x |x|. Esta ideia permite tornar solúvel exatamente, a energia zero, um incontável número de potenciais gerados por estas funções no âmbito da mecânica quântica supersimétrica. Exploramos algumas aplicações para estes superpotenciais, com ênfase para uma representação da molécula de amônia supersimétrica e, em particular, mostramos que um sistema muito estudado na literatura, gerado pelo superpotencial x 1/x, pode ser resolvido mais facilmente recorrendo-se à representação modular. Procuramos estudar as soluções exatas ou aproximadas - do espectro de energias dos Hamiltonianos parceiros supersimétricos utilizando metodologias adequadas ao respectivo caso, incluindo-se o conhecido potencial x4, sendo que o método variacional de coeficientes de funções foi o que melhor se adaptou ao estudo. Este método, pouco utilizado até o momento na literatura, permitiu não apenas resolver com excelente aproximação os primeiros níveis do sistema em estudo, como também comprovou a supersimetria do sistema modular. Mostramos também que em sistemas quânticos supersimétricos, a equação de Schroedinger pode ser colocada na forma da equação de Sturm-Liouville e apresentar soluções de polinômios ortogonais, sendo que a função-peso de tais polinômios é gerada pelo superpotencial. Uma breve abordagem da simetria PT envolvendo diretamente o potencial por nós proposto também foi investigada, e mostramos que o sistema é equivalente a um Hamiltoniano não Hermitiano com potencial V(z) = (z4). / In this work we study a new class of superpotentials in supersymmetric quantum mechanics, which we call modular because of their dependence on the modulus of the x coordinate. The starting superpotential is of the form x |x|. This idea helps make exactly solvable, at zero energy, several potentials generated by these functions in the context of supersymmetric quantum mechanics. We explore some applications for these superpotenciais, with emphasis on a representation of the supersymmetric ammonia molecule and, in particular, we show that a system generated by the superpotential x-1/x, widely studied in the literature, can be solved more easily making use to the modular representation. We also seek for spectral solutions exact or approximated - of the partners Hamiltonians based on the exact ground state wave function of zero energy including the conventional x4 potential. The use of the variational method of functions coefficients. These methods, rarely used to date in the literature, allowed not only solve with excellent approximation the first levels of the system under study, but also proved the supersymmetry of the modular system. The results were compared with others found in the literature. We also show that for supersymmetric quantum systems, the Schroedinger equation can be put in a form of the Sturm-Liouville equation, and so, orthogonal polynomials solutions can be find through a weight-function generated by the superpotential. A brief overview of the PTsymmetry of the system directly involving a modular model proposed was also investigated, and we show that this system is equivalent to the non-Hermitian Hamiltonian one with potential V (z) = z4.

Page generated in 0.0893 seconds