• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 898
  • 222
  • 202
  • 168
  • 50
  • 35
  • 24
  • 22
  • 17
  • 16
  • 16
  • 12
  • 9
  • 9
  • 9
  • Tagged with
  • 2121
  • 227
  • 225
  • 223
  • 169
  • 163
  • 157
  • 148
  • 145
  • 139
  • 135
  • 135
  • 126
  • 120
  • 113
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
91

Coverage and performance prediction of DGPS systems employing radiobeacon transmissions

Poppe, Dorothy Carol January 1995 (has links)
No description available.
92

Efeitos de maré no movimento orbital de satélites artificiais

Sampaio, Jarbas Cordeiro [UNESP] 19 February 2009 (has links) (PDF)
Made available in DSpace on 2014-06-11T19:25:29Z (GMT). No. of bitstreams: 0 Previous issue date: 2009-02-19Bitstream added on 2014-06-13T20:53:26Z : No. of bitstreams: 1 sampaio_jc_me_guara.pdf: 2009507 bytes, checksum: b45d477c1e3a6ce711aaa50ed32c42e1 (MD5) / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) / Os satélites artificiais são utilizados em várias atividades científicas como em geodinâmica, telecomunicações, estudo do clima, experiências com microgravidade, dentre outras. Para alcançar a precisão necessária para certas missões, as órbitas devem ser determinadas com bastante precisão levando em consideração várias forças que atuam nos satélites. O efeito de maré é uma das perturbações que afetam a órbita de um satélite artificial, pois tanto o Sol como a Lua deformam o planeta, alterando assim a distribuição de massa e o potencial utilizado para estudar a variação nos elementos orbitais do satélite. Neste trabalho estuda-se a influência da maré terrestre e oceânica da Terra sobre satélites artificiais que a orbitam. Foi desenvolvida a função perturbadora para a maré terrestre, com base tanto no modelo de Kozai como no de Kaula e para a maré oceânica é adotado o modelo de Harwood e Swinerd. Os desenvolvimentos das funções perturbadoras são feitos em termos do polinômio de Legendre, aproveitando a parte secular e de longo período para estudar a variação dos elementos orbitais do satélite. Resultados das soluções seculares indicam a maior contribuição da Lua, em comparação à contribuição do Sol. Também, as perturbações devido a maré terrestre são mais proeminentes do que a maré oceânica para ambos os satélites de baixa e de alta altitude. Considerando as soluções de longo período para o satélite de baixa altitude, os resultados mostram que, para o argumento do perigeu e para a excentricidade , o período de oscilação é maior para a maré oceânica comparado a maré terrestre. Considerando os diferentes modelos para as marés, também para o satélite de baixa altitude, é mostrado que a maior variação de amplitude é para o argumento do perigeu. Perturbações devido a ressonâncias são também analisadas para os elementos orbitais métricos. / Artificial Earth’s satellites are used in several scientific activities such as geodynamics, telecommunications, climate forecast, microgravity experiments, among others. In order to attain the precision needed for some missions the orbits must be determined with high accuracy taking into account several forces acting on the satellites. The tide effect is one of the disturbances that affect the orbit of an artificial satellite. In fact, both the Sun and the Moon deforms the planet and thus modifies its mass distribution and the used potential to study the variation in the orbital elements of the satellite. In this work it is studied the influence of the terrestrial and oceanic tides on artificial Earth’s satellites orbits. The disturbing functions for the terrestrial tide was developed based on the Kozai and Kaula models and for the oceanic tide was used Harwood and Swinerd model. The developments of the disturbing functions are performed in terms of the Legendre polynomials, using the secular and long period terms to study the variation of the orbital elements of the satellite. Results for the secular solution show the bigger contribution of the Moon, compared to the contribution of the Sun. Also, the perturbations due to the terrestrial tide are more noticeable than of the oceanic tide for both low and higher altitude satellites. Considering the long period solution for low altitude satellite, the results show that, for the argument of perigee and the eccentricity, the period of oscillation is bigger for the oceanic tide compared to the terrestrial tide. Considering different models for the tides, also for low altitude satellite, it is shown that the greatest amplitude’s variation is for argument of perigee. Perturbations due to resonance are also analyzed for the metric orbital elements.
93

Hypersonic control effectiveness

Kumar, D. January 1995 (has links)
The present study analyses the effects of a number of geometric parameters on the performance of a trailing edge control flap on a hypersonic body. The tests were conducted in a gun tunnel at Mach 8.2 and Mach 12.3. The study revealed that flap deflection promoted separation lengthscales and boundary layer transition. The latter significantly increased the local aerothermal loads on the flap. For well separated flows, flap heat transfer rates were successfully predicted by reference temperature theory. The promotion of transition caused a progressive reduction in the lengthscales of separated flows. In a free-flight environment, vehicle incidence varies considerably. Incidence was found to promote transition on both flat plates and control flaps. The latter resulted in a considerable increase in flap heat transfer. A modified version of reference temperature theory successfully predicted the aerothermal loads on the flap. For laminar and transitional interactions, the separated flow lengthscale was found to have a complex variation with incidence. A number of relevant flow parameters were identified. The intense heat loads on a vehicle in hypersonic flight dictates the blunting of the leading edge. This strengthens the leading edge shock structure and generates an entropy layer. Bluntness was found to significantly decrease the separation interaction scales on the flap. This was due to a reduction in the pressure recovered on the flap. The latter adverse affects control effectiveness. The aerothermal loads on the control flap was successfully predicted by reference temperature theory. An investigation into the efficiency of an under-expanded transverse jet controls was conducted on an axi-symmetric slender blunt cone. Force measurements found that the interaction augmented the jet reaction force by 70% at zero incidence. This increased to 110% at low incidence. The experiments found that the scale of the interaction region was determined by Poj/pes. Using this parameter, a closed loop algorithm for the shape of the separation front was developed. The latter can be used to predict jet reaction control effectiveness.
94

Servicing polar platforms using electric propulsion

Welch, C. S. January 1992 (has links)
The future of space development has been examined in the context of the infrastructure necessary support it. It is concluded that the selection of propulsion systems for in-orbit transportation requires the development of general computer codes capable of simulating the use of a wide range of propulsion systems on near-Earth missions. It is also concluded that, even if limited infrastructural development occurs, polar orbiting spacecraft will be an important feature of future space activities. Replacing current single-use polar spacecraft with extended-life serviceable platforms is attractive. However, the very limited manned access polar orbits in the mid-term future suggests that such platforms will only be possible if remote telerobotic/autonomous servicing can be carried out. To this extent polar platforms are considered to provide a useful driver and first testbed for the development of technologies designed to extend human capability in those regimes where direct mediation is not possible. Options for such remote servicing are examined, the concept of performing nodal transfers by enhanced differential nodal drift is introduced and the application of electric propulsion to this discussed. Low-thrust orbital manoeuvres are analyzed in this context and the conditions for optimum nodal transfer defined. Particular service vehicle configurations are then defined against a projected infrastructure and baseline polar platform constellation. A model for the service vehicle is defined and its performance investigated using a number of electric propulsion systems. Simulations of transfer manoeuvres; have been carried out and the effects and relative importance of the various orbit perturbations identified. It is concluded that a service vehicle propelled by a Xenon ion system offers the capability required and two final configurations are identified characterising different servicing mission upload schemes.
95

Simulation and measurements associated with the Olympus ku-band SSTDMA experiment

Islam, Qamar-ul January 1991 (has links)
The increase in demand for channel capacity and the limitations in satellite power and frequency spectrum is leading to requirements for advanced multiple beam antenna systems with frequency reuse. The concept of the Olympus satellite evolved from the fact that new technologies and methods are to be explored for future satellites. The role of Olympus can be seen in both the development of earth station networks and at the same time the satellite requirements for the future satellites. It is a step between advanced transparent repeaters and the future intelligent satellite with on-board processing. A review of commercial and experimental satellites employed in the European region is given in the thesis. The services offered by these satellites and the access methods used are discussed with particular emphasis on business services. The new research work reported was done on the experiments related to the Olympus SS-TDMA payload. First a survey of commercial TDMA systems was performed and their capabilities discussed in detail for the SS-TDMA experimental application. The Olympus payload description and link budget analysis was performed in order to identify the size of the earth station required for these networks. The performance of the satellite link was simulated using BOSS software package together with some earlier simulation using the TOPSIM software package. The methods of BER estimation used are investigated and various results compared. These simulations covered most aspects of the RF (degradation due to TWTA non-linearity, fading, carrier spacing, co-channel interference) and some aspects of the baseband circuits. These simulation results have been compared with the experimental results and were found to be in close agreement. Thus giving confidence in the simulation methods used. In SS-TDMA the problem of acquisition and synchronisation is very important. In this respect the design of the acquisition and synchronisation unit (ASU) is discussed in detail. The resulting ASU was interfaced with the reference station of the commercial TDMA system for the first phase of the SS-TDMA experiments. Finally we present results of various network control methods for the SS-TDMA network, including the buffer requirement for the on-board clock control with the sidereal day clock correction. The ASU design, its interface to the reference TDMA terminal and successful operation with the reference station in acquiring and synchronising with the satellite switch provided the real time operation of the SS-TDMA scheme. The operation was conducted experimentally using the BTRL (British Telecom Research Labs) experimental earth station at Martlesham both in the "reference station loopback" and "reference station and traffic station" configuration via the the SS-TDMA switch. Full details of the experiments and comparison with systems simulations are presented in the thesis.
96

Adaptive physical layer for satellite UMTS

Sumanasena, Muddarage Abhaya Kumarasiri January 2002 (has links)
Satellite resource management efficiency has been identified as one of the key factors in the commercial success of mobile satellite systems, since optimisation of all link budget elements is crucially important in order to make the most out of the satellite limited resources (bandwidth, power) which in turn have a direct impact on the cost of the system. The compensation techniques used in order to overcome the fading effects experienced in the link are generally applied by considering the worst-case channel conditions, resulting in inefficient utilisation of the transmission power as well as frequency spectrum. There is no dynamic control adaption used in current mobile satellite systems except simple power control. In addition, a single scheme is neither capable of providing an optimum solution for fade mitigation nor closing the link budget at all times. Therefore, it is necessary to use more than one technique at a time which offers the best solution in terms of spectrum and power efficiency. The efficiency of conventional systems, therefore, can be improved if it has the ability to match the effective user bit rate to the channel conditions by using a hybrid scheme. Hence, the aim of our work is to develop a physical layer by using a hybrid scheme, which results in higher throughput under favourable channel conditions. This technique also introduces a reduction of the data rate during bad channel conditions without the need to increase the transmitted power significantly. The novelty of this research work is centred on the switching mechanism used for such adaptations. For the first time, we propose an adaptive system based on the Rice factor variation. The suitability of this parameter for the proposed adaptive system is investigated first by considering the real time variation in the environment. We are proposing a feed back type of system in which the receiver estimates the Rice factor and sends it to the transmitter. Upon receiving this information, the transmitter selects the optimum modulation and coding scheme for the transmission in order to improve spectral and power efficiency of the system. In order to develop an adaptive physical layer, the main issues related to mobile satellite systems should be identified. Therefore, the key differences between the terrestrial and satellite mobile communication systems are presented at the beginning. A brief description about T/S-UMTS and the air interfaces proposed for standardisation of S-UMTS are presented and compared in the following chapter. Subsequently, a suitable baseline model was chosen and the simulation aspects are presented. The following chapter presents some of the parameters that have to be estimated in order to develop an adaptive physical layer. The performance evaluation of adaptive modulation and coding is presented in the last chapter. Key words: S-UMTS, SW-CDMA, Adaptive modulation and coding. Rate matching, SNR estimation, modulation detection. Rice factor estimation. Histogram comparison. Re-encoding.
97

Device technology and baseband switch for the advanced on-board processing satellites

Wong, Chun Wai January 1988 (has links)
This thesis examines a new market for satellite communication serving small fixed-station business systems. This market requires transmission between a large number of smaller and cheaper earth terminals. The traffic requirements for satellite business services in Europe by the year 2000 have been reviewed. An advanced regenerative on-board processing business satellite with 13 spot-beams for the European coverage was then proposed to meet the expected traffic growth. This satellite system is designed to meet the needs of the user rather than, as traditionally, the user fitting in with the satellite. SCPC/FDMA and R-TDMA (reservation-TDMA) multiple access schemes were found to be most suitable for the proposed system serving many small users whose traffic was mixed voice, data and video. The architecture of the satellite payload has been studied and two main functional blocks, transmultiplexer and baseband switch were identified. The use of the transmultiplexer is to transform the EDM channels into TDM and the baseband switch is to provide full connectivity between all the stations so that the revolutionary idea of having a "switchboard in the sky" can be realised. The development work for the baseband switch is reported in detail in this thesis together with a comparison of different architectures for the baseband switch. A proof-of-concept model for the baseband switch was designed, built and tested. From the test results, the feasibility of implementing the baseband switch using the chosen architecture was proved. Another main area studied in this thesis was device technology. The present and future capability of bipolar, CMOS and GaAs technology has been investigated concentrating mainly on digital devices and semi-custom technology. Since the satellite is operating in an hostile environment, it has been necessary to study the effects of radiation on semiconductor devices. The outcome of these studies indicate that it is very promising to launch such advanced satellite payloads in the late 1990's.
98

The effectiveness of spaceborne synthetic aperture radar for glacier monitoring

Marshall, Gareth John January 1996 (has links)
This work examines the effectiveness of spaceborne synthetic aperture radar (SAR) for investigating seasonally variable glaciological parameters, in particular its ability to discriminate glacier surface facies in order to estimate glacier mass balance. A multitemporal C-band SAR dataset of Nordenskiold Land, Spitsbergen, acquired by the ERS-1 satellite, is used for the analysis, which focuses on mountain glaciers rather than ice sheets. Validating field measurements of ice and snowpack parameters were obtained contemporaneously with two SAR images, prior to and during the ablation season. A general model for the annual backscatter cycle from a sub-polar glacier is derived from SAR data of three glacierised areas. This model reveals two seasonal reversals in the relative magnitude of backscatter from the ice and wet-snow facies, principally through a 10 dB change in the latter; these reversals mark the start and end of the ablation season. It is shown that a combination of winter and summer SAR imagery is necessary to estimate the equilibriumline altitude of a sub-polar glacier. Topographic distortion is the major limiting factor regarding the utilisation of SAR data for studying mountainous glaciers. Existing theoretical models of radar backscatter from snow and ice are validated for three scenarios: glacier ice, dry snow overlying glacier ice, and wet snow, using the in situ measurements. In addition, temporal variations of ice and snowpack parameters observed during the field campaigns are used to predict short-term seasonal changes in backscatter, and to corroborate the model of annual backscatter. ERS-1 SAR data are compared to NIR Landsat TM data in separate analyses of data information content and temporal resolution; the optical data are found to be better for both facies discrimination and obtaining synoptic glaciological information in mountainous regions. However, the Spitsbergen cloud cover is such that useful TM data may not necessarily be acquired in a given year; consequently SAR is the better sensor for obtaining guaranteed synoptic mass balance data for use in climate change studies, or for studying short-term events like glacier surges. These conclusions are shown to apply to the entire European Arctic sector except East Greenland, where the two sensors have similar temporal resolutions. Data from both sensors were integrated to provide an estimation of the synoptic mass balance of Nordenskiold Land for 1991/92; the results, which indicate an overall slightly negative mass balance, demonstrate that elevation is the principal factor governing glacier net mass balance in the region.
99

Variability of cloud optical depth and cloud droplet effective radius in layer clouds : satellite based analysis

Szczodrak, Malgorzata 05 1900 (has links)
Measurements made by the AVHRR (Advanced Very High Resolution Radiometer) on board of five NOAA polar orbiting satellites were used to retrieve cloud optical depth (τ) and cloud droplet effective radius (r[sub eff]) for marine boundary layer clouds over the Pacific Ocean west of California and over the Southern Ocean near Tasmania. Retrievals were obtained for 21 days of data acquired between 1987 and 1995 from which over 300 subscenes ~ 256 km x 256 km in size were extracted. On this spatial scale cloud fields were found to have mean τ between 8 and 32 and mean r[sub eff] between 6 and 17 μm. The frequency distribution of τ is well approximated by a two parameter gamma distribution. The gamma distribution also provides a good fit to the observed r[sub eff] distribution if the distribution is symmetric or positively skewed but fails for negatively skewed or bi-modal distributions of r[sub eff] which were also observed. The retrievals show a relationship between τ and r[sub eff] which is consistent with a simple "reference" cloud model with reff ~ r[sup 1 / 5]. The proportionality constant depends on cloud droplet number concentration N and cloud subadiabaticity β through the parameter N[sub sat] = N/ [sq rt. Β]. Departures from the reference behaviour occur in scenes with spatially coherent N[sub sat] regimes, separated by a sharp boundary. AVHRR imagery is able to separate two N[sub sat] regimes if they differ by at least 30% in most cases. Satellite retrievals of τ and r[sub eff] were compared with in situ aircraft measurement near Tasmania. The retrievals overestimated r[sub eff] by 0.7 to 3.6 μm on different flights, in agreement with results from earlier comparison studies. The r[sub eff] overestimation was found to be an offset independent of τ. The reference cloud model and the N[sub sat] retrieval were tested on aircraft data and yield results consistent with direct in situ measurements of N and 8. Spectral and multifractal analyses of the spatial structure of cloud visible radiance, τ and r[sub eff] fields in 34 satellite scenes revealed scale breaks at 3 to 2 km in all analysed scenes in agreement with some earlier observations (Davis et al. (1996a)) but in contrast with other work (Lovejoy et al. (1993)). The nonstationarity H(1) and intermittency C(1) parameters were computed for the 34 scenes, stratified using the reference cloud model and according to mean τ and r[sub eff]. Similar values of H(1) and C(1) were found in all these categories. These measurements of the frequency distribution and spatial variability of τ, r[sub eff], liquid water path (Iwp), and N[sub sat] can be used to place constraints on mesoscale models of layer clouds. / Arts, Faculty of / Geography, Department of / Graduate
100

Orbital Determination Feasibility of LEO Nanosatellites Using Small Aperture Telescopes

Strange, Michael R. 01 March 2017 (has links)
This thesis is directed toward the feasibility of observing satellites on the nano scale and determining an accurate propagated orbit using a Meade LX600-ACF 14” diameter aperture telescope currently located on the California Polytechnic State University campus. The optical telescope is fitted with an f/6.3 focal reducer, SBIG ST-10XME CCD camera and Optec TCF-S Focuser. This instrumentation allowed for a 22’ X 15’ arcminute FOV in order to accurately image passing LEO satellites. Through the use of the Double-r and Gauss Initial Orbit Determination methods as well as Least Squared Differential Correction and Extended Kalman Filter Orbit Determination methods, an accurate predicted orbit can be determined. These calculated values from observational data of satellites within the Globalstar system are compared against the most updated TLEs for each satellite at the time of observation. The determined differential errors from the well-defined TLEs acquired via online database were used to verify the feasibility of the accuracy which can be obtained from independent observations. Through minimization of error caused from imaging noise, pointing error, and timing error, the main determination of accurate orbital determination lies in the instrumentation mechanical capabilities itself. With the ability to acquire up to 7 individual satellite observations during a single transit, the use of both IOD and OD methods, and the recently acquired Cal Poly telescope with an increased 14” aperture, the feasibility of imaging and orbital determination of nanosatellites is greatly improved.

Page generated in 0.0582 seconds