• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 98
  • 37
  • 7
  • 4
  • 4
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 186
  • 186
  • 68
  • 48
  • 36
  • 31
  • 23
  • 19
  • 17
  • 16
  • 15
  • 15
  • 15
  • 13
  • 12
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
131

Refined <i>in vitro</i> Models for Prediction of Intestinal Drug Transport : Role of pH and Extracellular Additives in the Caco-2 Cell Model

Neuhoff, Sibylle January 2005 (has links)
<p>Drug transport across the intestinal epithelium is roughly predicted from permeability values obtained from Caco-2 cell monolayers. This thesis examines the important role of <i>pH</i> and extracellular additives for increasing the reliability and predictivity of the <i>in vitro</i> screening system, Caco-2.</p><p>It was shown that the passive transport of ionizable compounds may be biased by a false efflux or uptake component, when applying a physiological <i>pH</i>-gradient across the membrane. <i>pH</i> also affected the amount of compound available at the transporter-binding site. Therefore, <i>pH</i> dependence should be considered in studies of such compounds and of drug-drug interactions involving efflux transporters. It was also shown that proton-dependent apical uptake or basolateral efflux should be studied both with and without a <i>pH</i> gradient over the whole monolayers. </p><p>The two extracellular additives, bovine serum albumin (BSA) and the solubilizing agent, Cremophor<sup>®</sup> EL, also influenced Caco-2 permeabilities. BSA applied to the receiver side increases, and to the donor side decreases drug permeation according to the drug’s protein binding capacity. Thus, the absorptive transport for both passive and active compounds is favoured, giving a physiologically sound improvement of the Caco-2 cell model. Inclusion of BSA increased both the predictivity and quality of permeability studies, particularly of highly lipophilic, BCS class II compounds. Passive and active transport processes could also be distinguished after accounting for unbound concentrations. The overall effect of Cremophor<sup>®</sup> EL on the permeability to a drug was compound-specific and probably dependent on micellar incorporation. Cremophor<sup>®</sup> EL can therefore not be recommended. </p><p>Neither <i>pH</i> nor BSA affect the functionality of transporters such as P-glycoprotein. However, efflux ratios of ionizable or protein bound drugs are altered in the presence of a <i>pH</i>-gradient or BSA, indicating that an experimental system without protein or <i>pH</i> gradient can over- or underestimate active and passive efflux in drug transport.</p>
132

Evasion and Attack: Structural Studies of a Bacterial Albumin-binding Protein and of a Cephalosporin Biosynthetic Enzyme

Lejon, Sara January 2008 (has links)
<p>This thesis describes the crystal structures of two proteins in the context of combatting bacterial infections. The GA module is a bacterial albumin-binding domain from a surface protein expressed by pathogenic strains of the human commensal bacterium <i>Finegoldia magna</i>. The structure of the GA module in complex with human serum albumin (HSA) provides insights into bacterial immune evasion, where pathogenicity is acquired by the bacterial cell through the ability to coat (and disguise) itself with serum proteins. The structure shows binding of the GA module to HSA in the presence of fatty acids, and reveals interactions responsible for the host range specificity of the invading bacterium. The complex resulting from binding of the GA module to HSA readily forms stable crystals that permit structural studies of drug binding to HSA. This was exploited to study the specific binding of the drug naproxen to the albumin molecule.</p><p>Antibiotics play a major role in controlling infections by attacking invading bacteria. The enzyme deacetylcephalosporin C acetyltransferase (DAC-AT) catalyses the last step in the biosynthesis of the beta-lactam antibiotic cephalosporin C, one of the clinically most important antibiotics in current use. The enzyme uses acetyl coenzyme A as cofactor to acetylate a biosynthetic intermediate. Structures of DAC-AT in complexes with reaction intermediates have been determined. The structures suggest that the acetyl transfer reaction proceeds through a double displacement mechanism, with acetylation of a catalytic serine by the cofactor through a suggested tetrahedral transition state, followed by acetyl transfer to the intermediate through a second suggested tetrahedral transition state. The structure of DAC-AT yields valuable information for the continued study of cephalosporin biosynthesis in the context of developing new beta-lactam compounds.</p>
133

Protein engineering to explore and improve affinity ligands

Linhult, Martin January 2003 (has links)
In order to produce predictable and robust systems forprotein purification and detection, well characterized, small,folded domains descending from bacterial receptors have beenused. These bacterial receptors, staphylococcal protein A (SPA)and streptococcal protein G (SPG), possess high affinity to IgGand / or HSA. They are composed of repetitive units in whicheach one binds the ligand independently. The domains foldindependently and are very stable. Since the domains also havewellknown three-dimensional structures and do not containcysteine residues, they are very suitable as frameworks forfurther protein engineering. Streptococcal protein G (SPG) is a multidomain proteinpresent on the cell surface ofStreptococcus. X-ray crystallography has been used todetermine the binding site of the Ig-binding domain. In thisthesis the region responsible for the HSA affinity of ABD3 hasbeen determined by directed mutagenesis followed by functionaland structural analysis. The analysis shows that the HSAbindinginvolves residues mainly in the second α-helix. Most protein-based affinity chromatography media are verysensitive towards alkaline treatment, which is the preferredmethod for regeneration and removal of contaminants from thepurification devices in industrial applications. Here, aprotein engineering strategy has been used to improve thetolerance to alkaline conditions of different domains fromprotein G, ABD3 and C2. Amino acids known to be susceptibletowards high pH were substituted for less alkali susceptibleresidues. The new, engineered variants of C2 and ABD shownhigher stability towards alkaline pH. Also, very important forthe potential use as affinity ligands, these mutated variantsretained the secondary structure and the affinity to HSA andIgG, respectively. Moreover, dimerization was performed toinvestigate whether a higher binding capacity could be obtainedby multivalency. For ABD, binding studies showed that divalentligands coupled using non-directed chemistry demonstrated anincreased molar binding capacity compared to monovalentligands. In contrast, equal molar binding capacities wereobserved for both types of ligands when using a directed ligandcoupling chemistry involving the introduction and recruitmentof a unique C-terminal cysteine residue. The staphylococcal protein A-derived domain Z is also a wellknown and thoroughly characterized fusion partner widely usedin affinity chromatography systems. This domain is consideredto be relatively tolerant towards alkaline conditions.Nevertheless, it is desirable to further improve the stabilityin order to enable an SPA-based affinity medium to withstandeven longer exposure to the harsh conditions associated withcleaning in place (CIP) procedures. For this purpose adifferent protein engineering strategy was employed. Smallchanges in stability due to the mutations would be difficult toassess. Hence, in order to enable detection of improvementsregarding the alkaline resistance of the Z domain, a by-passmutagenesis strategy was utilized, where a mutated structurallydestabilized variant, Z(F30A) was used as a surrogateframework. All eight asparagines in the domain were exchangedone-by-one. The residues were all shown to have differentimpact on the alkaline tolerance of the domain. By exchangingasparagine 23 for a threonine we were able to remarkablyincrease the stability of the Z(F30A)-domain towards alkalineconditions. Also, when grafting the N23T mutation to the Zscaffold we were able to detect an increased tolerance towardsalkaline treatment compared to the native Z molecule. In allcases, the most sensitive asparagines were found to be locatedin the loops region. In summary, the work presented in this thesis shows theusefulness of protein engineering strategies, both to explorethe importance of different amino acids regarding stability andfunctionality and to improve the characteristics of aprotein. <b>Keywords:</b>binding, affinity, human serum albumin (HSA),albumin-binding domain (ABD), affinity chromatography,deamidation, protein A, stabilization, Z-domain, capacity,protein G, cleaning-in-place (CIP), protein engineering, C2receptor.
134

Macromolecules at Interfaces / Makromolekyler på ytor

Larsericsdotter, Helén January 2004 (has links)
In this thesis, the structure and stability of globular proteins adsorbed onto nanometer-sized hydrophilic silica particles were investigated using differential scanning calorimetry (DSC), hydrogen/deuterium exchange (HDX), and mass spectrometry (MS). The adsorption process itself was characterized with fluorescence and absorption spectroscopy and surface plasmon resonance (SPR). The combination of these methods offered a unique insight into adsorption-induced changes within proteins related to their adsorption characteristics. DSC contributed with thermodynamic information on the overall structural stability within the protein population. HDX in combination with MS contributed information on the structure and stability of adsorbed proteins with focus on changes within the secondary structure elements. In order to increase the structural resolution in this part of the investigation, proteolysis was performed prior to the MS analyzing step. Knowledge on the protein adsorption process was utilized in a practical approach called ligand fishing. In this approach, SPR was used to monitor the chip-based affinity purification of a protein with MS used for protein identification. Adsorption isotherms revealed that electrostatic interactions play an important role in the adsorption of proteins to hydrophilic surfaces. DSC investigation revealed that the thermal stability of proteins reduces with increasing electrostatic attraction between the protein and the surface and that this effect diminishes at higher surface coverage. The mass-increase due to exchange between protein hydrogen atoms and deuterium atoms in solution was investigated as a function of time. This gave insight into adsorption-induced changes in the structural stability of proteins. By combining DSC and HDX-MS, it was possible to differentiate between adsorption-induced changes in the secondary and tertiary structure. Additionally, if limited proteolysis was performed, the investigations gave insight into the orientation and protein segment specific changes in the stability of proteins adsorbed to silica surfaces. The adsorption of proteins to silica particles also provided the basis for a new experimental design that allows handling of minute amounts of proteins in a ligand fishing application, as used in the field of functional proteomics.
135

Evasion and Attack: Structural Studies of a Bacterial Albumin-binding Protein and of a Cephalosporin Biosynthetic Enzyme

Lejon, Sara January 2008 (has links)
This thesis describes the crystal structures of two proteins in the context of combatting bacterial infections. The GA module is a bacterial albumin-binding domain from a surface protein expressed by pathogenic strains of the human commensal bacterium Finegoldia magna. The structure of the GA module in complex with human serum albumin (HSA) provides insights into bacterial immune evasion, where pathogenicity is acquired by the bacterial cell through the ability to coat (and disguise) itself with serum proteins. The structure shows binding of the GA module to HSA in the presence of fatty acids, and reveals interactions responsible for the host range specificity of the invading bacterium. The complex resulting from binding of the GA module to HSA readily forms stable crystals that permit structural studies of drug binding to HSA. This was exploited to study the specific binding of the drug naproxen to the albumin molecule. Antibiotics play a major role in controlling infections by attacking invading bacteria. The enzyme deacetylcephalosporin C acetyltransferase (DAC-AT) catalyses the last step in the biosynthesis of the beta-lactam antibiotic cephalosporin C, one of the clinically most important antibiotics in current use. The enzyme uses acetyl coenzyme A as cofactor to acetylate a biosynthetic intermediate. Structures of DAC-AT in complexes with reaction intermediates have been determined. The structures suggest that the acetyl transfer reaction proceeds through a double displacement mechanism, with acetylation of a catalytic serine by the cofactor through a suggested tetrahedral transition state, followed by acetyl transfer to the intermediate through a second suggested tetrahedral transition state. The structure of DAC-AT yields valuable information for the continued study of cephalosporin biosynthesis in the context of developing new beta-lactam compounds.
136

Electrospray Ionization Mass Spectrometry for Determination of Noncovalent Interactions in Drug Discovery

Benkestock, Kurt January 2008 (has links)
Noncovalent interactions are involved in many biological processes in which biomolecules bind specifically and reversibly to a partner. Often, proteins do not have a biological activity without the presence of a partner, a ligand. Biological signals are produced when proteins interact with other proteins, peptides, oligonucleotides, nucleic acids, lipids, metal ions, polysaccharides or small organic molecules. Some key steps in the drug discovery process are based on noncovalent interactions. We have focused our research on the steps involving ligand screening, competitive binding and ‘off-target’ binding. The first paper in this thesis investigated the complicated electrospray ionization process with regards to noncovalent complexes. We have proposed a model that may explain how the equilibrium between a protein and ligand changes during the droplet evaporation/ionization process. The second paper describes an evaluation of an automated chip-based nano-ESI platform for ligand screening. The technique was compared with a previously reported method based on nuclear magnetic resonance (NMR), and excellent correlation was obtained between the results obtained with the two methods. As a general conclusion we believe that the automated nano-ESI/MS should have a great potential to serve as a complementary screening method to conventional HTS. Alternatively, it could be used as a first screening method in an early phase of drug development programs when only small amounts of purified targets are available. In the third article, the advantage of using on-line microdialysis as a tool for enhanced resolution and sensitivity during detection of noncovalent interactions and competitive binding studies by ESI-MS was demonstrated. The microdialysis device was improved and a new approach for competitive binding studies was developed. The last article in the thesis reports studies of noncovalent interactions by means of nanoelectrospray ionization mass spectrometry (nanoESI-MS) for determination of the specific binding of selected drug candidates to HSA. Two drug candidates and two known binders to HSA were analyzed using a competitive approach. The drugs were incubated with the target protein followed by addition of site-specific probes, one at a time. The drug candidates showed predominant affinity to site I (warfarin site). Naproxen and glyburide showed affinity to both sites I and II. / QC 20100705
137

Sustainable Reaction and Separation Systems

Newton, Elizabeth Lynn 17 August 2005 (has links)
With increasing environmental awareness and natural resource limitations, researchers must begin to incorporate sustainability into their process and product designs. One target for green engineering is in reaction and separation design. This is typically done in a wasteful and often toxic manner with organic solvents and lack of recycle. The following thesis discusses alternatives to these costly separations by means of ionic liquids, benign extraction, separation with carbon dioxide, and near critical water. Ionic liquids are combined with carbon dioxide to induce melting point depressions of up to 124 degrees Celsius. Using this system as a reaction medium will offer control over the reaction phases while utilizing green solvents. Benign extractions are performed on both ferulic acid and on proteins from biomass by replacing alkaline solvents and costly protein separation techniques with simple liquid-liquid extraction. This means simpler systems and less waste than from previous methods. This thesis also discusses an opportunity for more efficient separation and recycle of a pharmaceutical catalyst, Mn-Salen. Using carbon dioxide with the organic aqueous tunable solvent system, the reaction can be run homogeneously and the product and catalyst separated heterogeneously, thus creating an extremely efficient process. Lastly, near critical water is used as an extraction and reaction medium by extracting ferulic acid from Brewers Spent Grain and then catalyzing its transformation to 4-vinylguaiacol. In this manner a simple, benign process is used to turn waste into valuable chemicals. Although somewhat different, each of the studied processes strives to eliminate waste and toxicity of many commonly used reaction and separation techniques, thus creating safe and sustainable processes.
138

Protein engineering to explore and improve affinity ligands

Linhult, Martin January 2003 (has links)
<p>In order to produce predictable and robust systems forprotein purification and detection, well characterized, small,folded domains descending from bacterial receptors have beenused. These bacterial receptors, staphylococcal protein A (SPA)and streptococcal protein G (SPG), possess high affinity to IgGand / or HSA. They are composed of repetitive units in whicheach one binds the ligand independently. The domains foldindependently and are very stable. Since the domains also havewellknown three-dimensional structures and do not containcysteine residues, they are very suitable as frameworks forfurther protein engineering.</p><p>Streptococcal protein G (SPG) is a multidomain proteinpresent on the cell surface of<i>Streptococcus</i>. X-ray crystallography has been used todetermine the binding site of the Ig-binding domain. In thisthesis the region responsible for the HSA affinity of ABD3 hasbeen determined by directed mutagenesis followed by functionaland structural analysis. The analysis shows that the HSAbindinginvolves residues mainly in the second α-helix.</p><p>Most protein-based affinity chromatography media are verysensitive towards alkaline treatment, which is the preferredmethod for regeneration and removal of contaminants from thepurification devices in industrial applications. Here, aprotein engineering strategy has been used to improve thetolerance to alkaline conditions of different domains fromprotein G, ABD3 and C2. Amino acids known to be susceptibletowards high pH were substituted for less alkali susceptibleresidues. The new, engineered variants of C2 and ABD shownhigher stability towards alkaline pH. Also, very important forthe potential use as affinity ligands, these mutated variantsretained the secondary structure and the affinity to HSA andIgG, respectively. Moreover, dimerization was performed toinvestigate whether a higher binding capacity could be obtainedby multivalency. For ABD, binding studies showed that divalentligands coupled using non-directed chemistry demonstrated anincreased molar binding capacity compared to monovalentligands. In contrast, equal molar binding capacities wereobserved for both types of ligands when using a directed ligandcoupling chemistry involving the introduction and recruitmentof a unique C-terminal cysteine residue.</p><p>The staphylococcal protein A-derived domain Z is also a wellknown and thoroughly characterized fusion partner widely usedin affinity chromatography systems. This domain is consideredto be relatively tolerant towards alkaline conditions.Nevertheless, it is desirable to further improve the stabilityin order to enable an SPA-based affinity medium to withstandeven longer exposure to the harsh conditions associated withcleaning in place (CIP) procedures. For this purpose adifferent protein engineering strategy was employed. Smallchanges in stability due to the mutations would be difficult toassess. Hence, in order to enable detection of improvementsregarding the alkaline resistance of the Z domain, a by-passmutagenesis strategy was utilized, where a mutated structurallydestabilized variant, Z(F30A) was used as a surrogateframework. All eight asparagines in the domain were exchangedone-by-one. The residues were all shown to have differentimpact on the alkaline tolerance of the domain. By exchangingasparagine 23 for a threonine we were able to remarkablyincrease the stability of the Z(F30A)-domain towards alkalineconditions. Also, when grafting the N23T mutation to the Zscaffold we were able to detect an increased tolerance towardsalkaline treatment compared to the native Z molecule. In allcases, the most sensitive asparagines were found to be locatedin the loops region.</p><p>In summary, the work presented in this thesis shows theusefulness of protein engineering strategies, both to explorethe importance of different amino acids regarding stability andfunctionality and to improve the characteristics of aprotein.</p><p><b>Keywords:</b>binding, affinity, human serum albumin (HSA),albumin-binding domain (ABD), affinity chromatography,deamidation, protein A, stabilization, Z-domain, capacity,protein G, cleaning-in-place (CIP), protein engineering, C2receptor.</p>
139

The Spectrochemical Characterization of Novel Vis-NIR Fluorescence Dyes and Developing a Laser Induced Fluorescence Capillary Zone Electrophoresis (LIF-CZE) Technique to Study Alkanesulfonate Monooxygenase

Beckford, Garfield 12 August 2014 (has links)
A new Laser Induced Fluorescence Capillary Zone Electrophoresis (LIF-CZE) bioassay to detect and study the catalytic activity of the sulfur assimilating enzyme commonly found in E. coli species; alkanesulfonate monooxygenase (EC 1.14.14.5) is described for the first time. This technique enables the possibility for direct injection onto a capillary for detection without the need for pre-concentration of sample and with minimal sample preparative steps prior to analysis. In this bioassay, a group of Fischer based cyanine dyes and two Oxazine (Nile red) derivatives were designed for further optimization as key Vis-NIR fluorescent substrate. In developing this technique, the test dyes were first assessed for their photophysical properties, based on four criteria; (1) photostable (2) solvatochromism (3) binding affinity towards both the monooxygenase active site and serum albumin and (4) chemical stability in strong electric field strength. Applying key dye characterization procedures including; molar absorptivity determination, quantum yield determination, photostability, solvatochromism and protein interaction studies it was determined that the Fischer indolium cyanine dyes were most suitable for the method development. The data revealed that under the test conditions, reduced flavin, the oxidative monooxygenase catalytically specifically converts the alkylsulfonate substituted cyanine dyes to the corresponding aldehyde. This new bioassay has proven to be quick, portable, sensitive, reliable and the exhibit the possibility of ‘on-the-spot’ detection; advantages not readily realized with other commonly applied techniques such as PCR, SPR, ELISA and GC used to study bacterial sulfur assimilation processes. In addition, recent literature results proposed by other research groups developing similar techniques showed strong reliance on GC analyses. Those assays involve the use of low molecular weight straight chain non-emissive alkanesulfonate substrates. Once enzyme catalysis occurs the aldehyde is formed becomes rather volatile and requires complex and tedious headspace sampling for GC analyses. This feature limits the in vitro applicability and eliminated the possibility in vivo development. Our goal is to further develop, optimize and present this CZE based bioassay as a suitable alternative to the current trends in the field while creating a more robust and sensitive in vitro monooxygenase detection method with the possibilities of in vivo application.
140

Refined in vitro Models for Prediction of Intestinal Drug Transport : Role of pH and Extracellular Additives in the Caco-2 Cell Model

Neuhoff, Sibylle January 2005 (has links)
Drug transport across the intestinal epithelium is roughly predicted from permeability values obtained from Caco-2 cell monolayers. This thesis examines the important role of pH and extracellular additives for increasing the reliability and predictivity of the in vitro screening system, Caco-2. It was shown that the passive transport of ionizable compounds may be biased by a false efflux or uptake component, when applying a physiological pH-gradient across the membrane. pH also affected the amount of compound available at the transporter-binding site. Therefore, pH dependence should be considered in studies of such compounds and of drug-drug interactions involving efflux transporters. It was also shown that proton-dependent apical uptake or basolateral efflux should be studied both with and without a pH gradient over the whole monolayers. The two extracellular additives, bovine serum albumin (BSA) and the solubilizing agent, Cremophor® EL, also influenced Caco-2 permeabilities. BSA applied to the receiver side increases, and to the donor side decreases drug permeation according to the drug’s protein binding capacity. Thus, the absorptive transport for both passive and active compounds is favoured, giving a physiologically sound improvement of the Caco-2 cell model. Inclusion of BSA increased both the predictivity and quality of permeability studies, particularly of highly lipophilic, BCS class II compounds. Passive and active transport processes could also be distinguished after accounting for unbound concentrations. The overall effect of Cremophor® EL on the permeability to a drug was compound-specific and probably dependent on micellar incorporation. Cremophor® EL can therefore not be recommended. Neither pH nor BSA affect the functionality of transporters such as P-glycoprotein. However, efflux ratios of ionizable or protein bound drugs are altered in the presence of a pH-gradient or BSA, indicating that an experimental system without protein or pH gradient can over- or underestimate active and passive efflux in drug transport.

Page generated in 0.0496 seconds