• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 6
  • 6
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Low energy pre-blended mortars: Part 2-Production and characterisation of mortars using a novel lime drying technique

Hughes, David C., Illingworth, J.M., Starinieri, V. 30 December 2015 (has links)
No / The presence of free water in mortars destined for silo or bagged storage can lead to the degradation of the binder phase. Such water may be present as a result of using wet, as-delivered sand or as a consequence of prior processes such as de-activation of Roman cement. Thus, water must be removed from the system prior to storage. Part 1 of this paper describes the control of a technique by which quicklime is added to the wet system which principally dries it by both slaking the quicklime and evaporation as a consequence of the exothermic slaking reaction. Two examples of mortars are presented in which excess water is removed from the system by the inclusion of quicklime. In the first, the water is present in the as-delivered sand and the binder is a combination of the slaked lime and ggbs. In the second, the water remains after pre-hydration of a Roman cement which is a process to retard its rapid setting characteristics. It is shown that optimally dried mortars are not subject to degradation following storage of both mortar types. (C) 2015 Elsevier Ltd. All rights reserved.
2

Projeto e operação de hidratadores industriais de cal virgem

Parreira, Priciane Martins 20 December 2010 (has links)
The product of the hydration process of lime, milk of lime, is a byproduct of lime commonly used industrially because it is present in the industrial processes of steel mill, chemical and sugar and alcohol. But the hydration process has been little studied and this dissertation aims to study the influence of the hydration process in the quality of product and the influence of quality of milk of lime in the efficiency of the industrial process which milk of lime is used. Through industry data found that the hydration process current and more useful for industrial is inappropriate and produces high amounts of residues that provide the company losses. In the industrial process the quality of milk of lime improves the performance of the industrial process by reducing the amount of material used and the amount of residue formed, consequently its accumulation in the equipment. And to produce a lime milk of good quality, high surface area and low amount of residue, you should use a mixing process suitable for the suspensions of lime milk with low particle sizes of lime and heating of initial water of hydration. And especially an efficient and appropriate agitation Therefore, the pilot of a unit of hydration was proposed and through this became the rheological behavior of suspensions of milk of lime and with these data, made up the study of power consumed by the agitator. It was also proposed changes on impeller to improve the efficiency of agitation and a system of residue removal at the end of hydration through rotary screens. / O produto proveniente do processo de hidratação da cal, o leite de cal, é um dos subprodutos da cal mais utilizados industrialmente, pois está presente nos processos das indústrias siderúrgicas, químicas e usinas de açúcar e álcool. Porém o processo de hidratação ainda é pouco estudado e esta dissertação tem como objetivo estudar a influência do processo de hidratação da cal na qualidade do produto e a influência da qualidade do leite de cal na eficiência do processo industrial no qual a leite de cal é utilizado. Através de dados industriais verificou-se que o processo de hidratação atual e mais usaado pelas industriais é inadequado e produz quantidades altas de resíduos, proporcionando a empresa perdas. No processo industrial a qualidade do leite de cal melhora o desempenho do processo industrial diminuindo a quantidade de material utilizado e a quantidade de resíduos formados, conseqüentemente o seu acúmulo nos equipamentos. E para se produzir um leite de cal de boa qualidade, com alta área superficial e baixa quantidade de resíduos, deve-se utilizar um processo de mistura adequado as suspensões de leite de cal: Granulometrias baixas de cal e aquecimento da água inicial de hidratação. E principalmente uma agitação eficiente e adequada. Por isso, o projeto piloto de uma unidade de hidratação foi proposto e através deste fez-se o estudo reológico das suspensões de leite de cal e com esses dados, fez-se o estudo da potência consumida pelo agitador. Também foi proposto mudanças no agitador para melhorar a eficiência da agitação e um sistema de remoção de resíduos ao final da hidratação através de peneiras rotativas. / Mestre em Engenharia Química
3

Management of hydrogen sulphide generation at a Kraft paper mill

Rava, Eleonora Maria Elizabeth 15 September 2008 (has links)
A local integrated pulp and paper Kraft mill had come under pressure from the local communities and mill personnel to reduce the odours that were perceived to be generated at the Farm Dams and irrigation farm situated adjacent to the mill. The typical odours associated with Kraft mills are due to the generation of four reduced sulphur compounds such as hydrogen sulphide (H2S), methyl-mercaptan (CH3SH), dimethyl-sulphide (CH3)2S and dimethyl-disulphide (CH3)2S2. These compounds are collectively referred to as Total Reduced Sulphur (TRS) components which are generated as a direct result of the Kraft pulping and chemical recovery process. These components can either be in the gaseous or aqueous phase depending on the characteristics of the effluent. Gaseous and aqueous TRS profiling of the mill indicated that hydrogen sulphide (H2S) was the main odour component generated and emitted from the Clarifiers and the Treated Effluent Transfer Sump (TETS) at the effluent treatment plant. The hydrogen sulphide (H2S) emission levels were affected by process upsets, sludge removal frequencies, chemical composition of the effluent, Sulphate Reducing Bacteria (SRB) activity, pH and temperature fluctuations. Treatment options such as pH control using slaked lime, dosing of biocides, addition of biomodifiers and/or a sulphate reduction inhibitor were investigated. The use of slaked lime, Ca(OH) 2, for pH control was not practical due to continuous pH fluctuations, increasing the pH would increase the scaling tendencies of the effluent and would also affect the soil cation-anion exchange properties of the irrigated farm land. The use of non-oxidising biocides was effective in reducing SRB activity between 99.2% and 99.8% at dosages between 4 mg/l and 25 mg/l. However, the use of biocides was not considered as a long term treatment option due to the various disadvantages such as the stability of the biocides at fluctuating pH and temperatures, half-life, environmental accumulation, toxicity and costs. The aqueous H2S level was reduced by 79% using different combinations of biomodifiers (nitrates, nitrites, molybdenum). Increasing the dosages of the biomodifiers (> 500mg/l) would be required to increase the reduction of H2S levels by more than 79%. The increased dosages would significantly increase the cost of the treatment programme. The accumulation of nitrates, nitrites and molybdenum could affect the soil texture, cation-anion exchange capacity, permeability, Sodium Absorption Ratio (SAR) and nutrient availability. A more environmentally friendly and cost effective treatment was found using sodium nitrate (biomodifier) together with AQ (sulphate reduction inhibitor). The continuous dosing of 50 mg/l sodium nitrate together with 4 mg/l AQ would be effective in reducing the average aqueous H2S levels (40 mg/l) by at least 92%. This treatment would also be compatible with aeration or oxidation procedures to further increase the removal of H2S to achieve an aqueous H2S level of <1 mg/l. Aeration or oxidation would also increase the dissolved oxygen and COD levels, increase the inhibition of SRB activity and oxidise any reduced sulphur. The dosing of sodium nitrate and AQ to control the generation of H2S is not patented in South Africa. It can, therefore, be used to treat the Kraft mill effluent without violating any intellectual property rights in South Africa. / Dissertation (MSc(Applied Science))--University of Pretoria, 2008. / Chemical Engineering / unrestricted
4

Investigation into the occurrence of the dinoflagellate, Ceratium hirundinella in source waters and the impact thereof on drinking water purification / van der Walt N.

Van der Walt, Nicolene January 2011 (has links)
The Ceratium species occurring in the Vaal River since 2000, was identified as Ceratium hirundinella (O.F. Müller) Dujardin as proposed by Van Ginkel et al (2001). Ceratium hirundinella is known to cause problems in drinking water purification and has been penetrating into the final drinking water of Rand Water since 2006. Ceratium hirundinella is associated with many other water purification problems such as disrupting of the coagulation and flocculation processes, blocking of sand filters and algal penetration into the drinking water. Ceratium hirundinella also produce fishy taste and odorous compounds and causes discolouration of the water. The aims of this study were to determine the main environmental factors which are associated with the bloom formation of C. hirundinella in the source water and to investigate the influence of C. hirundinella on the production of potable water. In order to optimise treatment processes and resolve problems associated with high C. hirundinella concentrations during the production of potable water, jar testing and chlorine exposure experiments were performed. Multivariate statistical analyses were performed to determine the main environmental variables behind C. hirundinella blooms. Ten years data (2000 - 2009) from the sampling point C–VRB5T in the Vaal River, (5 km upstream from the Barrage weir) were used for this investigation, because C. hirundinella occurred there frequently during the ten year period. In this study, it was found that C. hirundinella was favoured by high pH, Chemical Oxygen Demand (COD), orthophoshapte (PO4), and silica concentrations, as well as low turbidity and low dissolved inorganic nitrogen (DIN) concentrations. No correlation was found between C. hirundinella and temperature, suggesting that this alga does not occur during periods of extreme warm or extreme cold conditions, but most probably during autumn and spring. The results of the multivariate statistical analysis performed with historical data from Vaalkop dam, indicate that the dinoflagellate C. hirundinella seems to be favoured by low temperature and turbidity, and high DIN, Fe, Methyl–orange alkalinity, Cd, PO4, Conductivity, pH, hardness and SO4 concentrations. In order to optimise treatment processes such as coagulation, flocculation and sedimentation, jar testing experiments were performed to investigate different coagulant chemicals namely: cationic poly–electrolyte only, cationic poly–electrolyte in combination with slaked lime (CaO) and CaO in combination with activated silica. Water from four different sampling localities were chosen to perform the different jar testing experiments: 1) sampling point M–FOREBAY (in the Forebay, connecting the canal to the Zuikerbosch Purification plant) near Vereeniging due to its proximity to the Zuikerbosch treatment plant, 2) M–CANAL_VD (upstream from the inflow of the recovered water from Panfontein) to determine the influence of (if any) the recovered water from Panfontein on Forebay source water, 3) source water from Vaalkop Dam (M–RAW_VAALKOP) and 4) source water from Rietvlei Dam (water from both Vaalkop and Rietvlei Dams contained high concentrations of C. hirundinella at that time of sampling) to determine which coagulant chemical is the most effective in removing high concentrations of C. hirundinella cells during the production of drinking water. The jar testing experiments with Vaalkop Dam and Rietvlei Dam source water (rich with C. hirundinella) indicated that using cationic poly–electrolyte alone did not remove high concentrations of C. hirundinella efficiently. However, when CaO (in combination with cationic poly–electrolyte or activated silica) were dosed to Vaalkop Dam source water a significant decrease of C. hirundinella concentration was observed. This indicates that the C. hirundinella cells were “shocked or stressed” when exposed to the high pH of the CaO, rendering it immobile and thereby enhancing the coagulation and flocculation process. However, when 10 mg/L CaO in combination with poly–electrolyte was dosed to Rietvlei Dam source water the turbidity and chlorophyll–665 results indicated that this coagulant chemical procedure was ineffective in removing algal material from the source water. The jar testing experiments using the cationic poly–electrolyte alone or cationic poly–electrolyte in combination with CaO on M–FOREBAY and M–CANAL_VD source water, showed a decrease in turbidity, chlorophyll–665 concentration, and total algal biomass, with an increase of coagulant chemical. When CaO in combination with activated silica was dosed, the inherent turbidity of the lime increased the turbidity of the Vaalkop Dam, M–FOREBAY and M–CANAL_VD source water to such an extent that it affected coagulation negatively, resulting in high turbidity values in the supernatant. Regardless of the turbidity values, the chlorophyll–665 concentration and total algal biomass (C. hirundinella specifically in Vaalkop Dam source water) decreased significantly when CaO was dosed in combination with activated silica. Therefore it was concluded that a cationic poly–electrolyte alone is a good coagulant chemical for the removal of turbidity, but when high algal biomass occur in the source water it is essential to add CaO to “stress” or “shock” the algae for the effective removal thereof. However, when CaO in combination with activated silica was dosed to Rietvlei Dam source water a decrease in turbidity and chlorophyll–665 concentration was found with an increasing coagulant chemical concentration. These results confirm the fact that coagulant chemicals may perform differently during different periods of the year when water chemistry changes and that certain coagulant chemicals may never be suitable to use for certain source waters. For the effective removal of algae during water purification, it is recommended that cationic poly–electrolyte in combination with CaO are used as coagulant chemical at the Zuikerbosch Water Purification Plant. Turbidity is not a good indication of algal removal efficiency during jar testing experiments. If problems with high algal concentrations in the source water are experienced it is advisable to also determine the chlorophyll–665 concentrations of the supernatant water during the regular jar testing experiments, since it will give a better indication of algal removal. Chlorine exposure experiments were performed on water from Vaalkop Dam (M–RAW_VAALKOP) and Rietvlei Dam source water, to determine the possibility of implementing pre– or intermediate chlorination with the aim to render the cells immobile for more effective coagulation. The chlorine exposure experiments with Vaalkop Dam and Rietvlei Dam source water showed similar results. The chlorine concentration to be dosed as part of pre– or intermediate chlorination will differ for each type of source water as the chemical and biological composition of each water body are unique. When the effect of chlorine on the freshwater dinoflagellate C. hirundinella was investigated, it was found that the effective chlorine concentration where 50 % of Ceratium cells were rendered immobile (EC50) was approximately 1.16 mg/L for Vaalkop Dam source water. For the source water sampled from Rietvlei Dam, it was found that the EC50 was at approximately 0.87 mg/L. Results of analyses to determine the organic compounds in the water after chlorination revealed that an increase in chlorine concentration resulted in increase in total organic carbon concentration (TOC), as well as a slight increase in MIB and trihalomethanes (CHCl3). Pre– or intermediate chlorination seem to be an effective treatment option for the dinoflagellate C. hirundinella to be rendered immobile and thereby assisting in its coagulation process. The use of pre– or intermediate chlorination to effectively treat source waters containing high concentrations of C. hirundinella is a viable option to consider. However, the organic compounds in the water should be monitored and the EC50 value for each source water composition should be determined carefully as to restrict cell lysis and subsequent release of organic compounds into the water. / Thesis (M.Sc. (Environmental Science))--North-West University, Potchefstroom Campus, 2012.
5

Investigation into the occurrence of the dinoflagellate, Ceratium hirundinella in source waters and the impact thereof on drinking water purification / van der Walt N.

Van der Walt, Nicolene January 2011 (has links)
The Ceratium species occurring in the Vaal River since 2000, was identified as Ceratium hirundinella (O.F. Müller) Dujardin as proposed by Van Ginkel et al (2001). Ceratium hirundinella is known to cause problems in drinking water purification and has been penetrating into the final drinking water of Rand Water since 2006. Ceratium hirundinella is associated with many other water purification problems such as disrupting of the coagulation and flocculation processes, blocking of sand filters and algal penetration into the drinking water. Ceratium hirundinella also produce fishy taste and odorous compounds and causes discolouration of the water. The aims of this study were to determine the main environmental factors which are associated with the bloom formation of C. hirundinella in the source water and to investigate the influence of C. hirundinella on the production of potable water. In order to optimise treatment processes and resolve problems associated with high C. hirundinella concentrations during the production of potable water, jar testing and chlorine exposure experiments were performed. Multivariate statistical analyses were performed to determine the main environmental variables behind C. hirundinella blooms. Ten years data (2000 - 2009) from the sampling point C–VRB5T in the Vaal River, (5 km upstream from the Barrage weir) were used for this investigation, because C. hirundinella occurred there frequently during the ten year period. In this study, it was found that C. hirundinella was favoured by high pH, Chemical Oxygen Demand (COD), orthophoshapte (PO4), and silica concentrations, as well as low turbidity and low dissolved inorganic nitrogen (DIN) concentrations. No correlation was found between C. hirundinella and temperature, suggesting that this alga does not occur during periods of extreme warm or extreme cold conditions, but most probably during autumn and spring. The results of the multivariate statistical analysis performed with historical data from Vaalkop dam, indicate that the dinoflagellate C. hirundinella seems to be favoured by low temperature and turbidity, and high DIN, Fe, Methyl–orange alkalinity, Cd, PO4, Conductivity, pH, hardness and SO4 concentrations. In order to optimise treatment processes such as coagulation, flocculation and sedimentation, jar testing experiments were performed to investigate different coagulant chemicals namely: cationic poly–electrolyte only, cationic poly–electrolyte in combination with slaked lime (CaO) and CaO in combination with activated silica. Water from four different sampling localities were chosen to perform the different jar testing experiments: 1) sampling point M–FOREBAY (in the Forebay, connecting the canal to the Zuikerbosch Purification plant) near Vereeniging due to its proximity to the Zuikerbosch treatment plant, 2) M–CANAL_VD (upstream from the inflow of the recovered water from Panfontein) to determine the influence of (if any) the recovered water from Panfontein on Forebay source water, 3) source water from Vaalkop Dam (M–RAW_VAALKOP) and 4) source water from Rietvlei Dam (water from both Vaalkop and Rietvlei Dams contained high concentrations of C. hirundinella at that time of sampling) to determine which coagulant chemical is the most effective in removing high concentrations of C. hirundinella cells during the production of drinking water. The jar testing experiments with Vaalkop Dam and Rietvlei Dam source water (rich with C. hirundinella) indicated that using cationic poly–electrolyte alone did not remove high concentrations of C. hirundinella efficiently. However, when CaO (in combination with cationic poly–electrolyte or activated silica) were dosed to Vaalkop Dam source water a significant decrease of C. hirundinella concentration was observed. This indicates that the C. hirundinella cells were “shocked or stressed” when exposed to the high pH of the CaO, rendering it immobile and thereby enhancing the coagulation and flocculation process. However, when 10 mg/L CaO in combination with poly–electrolyte was dosed to Rietvlei Dam source water the turbidity and chlorophyll–665 results indicated that this coagulant chemical procedure was ineffective in removing algal material from the source water. The jar testing experiments using the cationic poly–electrolyte alone or cationic poly–electrolyte in combination with CaO on M–FOREBAY and M–CANAL_VD source water, showed a decrease in turbidity, chlorophyll–665 concentration, and total algal biomass, with an increase of coagulant chemical. When CaO in combination with activated silica was dosed, the inherent turbidity of the lime increased the turbidity of the Vaalkop Dam, M–FOREBAY and M–CANAL_VD source water to such an extent that it affected coagulation negatively, resulting in high turbidity values in the supernatant. Regardless of the turbidity values, the chlorophyll–665 concentration and total algal biomass (C. hirundinella specifically in Vaalkop Dam source water) decreased significantly when CaO was dosed in combination with activated silica. Therefore it was concluded that a cationic poly–electrolyte alone is a good coagulant chemical for the removal of turbidity, but when high algal biomass occur in the source water it is essential to add CaO to “stress” or “shock” the algae for the effective removal thereof. However, when CaO in combination with activated silica was dosed to Rietvlei Dam source water a decrease in turbidity and chlorophyll–665 concentration was found with an increasing coagulant chemical concentration. These results confirm the fact that coagulant chemicals may perform differently during different periods of the year when water chemistry changes and that certain coagulant chemicals may never be suitable to use for certain source waters. For the effective removal of algae during water purification, it is recommended that cationic poly–electrolyte in combination with CaO are used as coagulant chemical at the Zuikerbosch Water Purification Plant. Turbidity is not a good indication of algal removal efficiency during jar testing experiments. If problems with high algal concentrations in the source water are experienced it is advisable to also determine the chlorophyll–665 concentrations of the supernatant water during the regular jar testing experiments, since it will give a better indication of algal removal. Chlorine exposure experiments were performed on water from Vaalkop Dam (M–RAW_VAALKOP) and Rietvlei Dam source water, to determine the possibility of implementing pre– or intermediate chlorination with the aim to render the cells immobile for more effective coagulation. The chlorine exposure experiments with Vaalkop Dam and Rietvlei Dam source water showed similar results. The chlorine concentration to be dosed as part of pre– or intermediate chlorination will differ for each type of source water as the chemical and biological composition of each water body are unique. When the effect of chlorine on the freshwater dinoflagellate C. hirundinella was investigated, it was found that the effective chlorine concentration where 50 % of Ceratium cells were rendered immobile (EC50) was approximately 1.16 mg/L for Vaalkop Dam source water. For the source water sampled from Rietvlei Dam, it was found that the EC50 was at approximately 0.87 mg/L. Results of analyses to determine the organic compounds in the water after chlorination revealed that an increase in chlorine concentration resulted in increase in total organic carbon concentration (TOC), as well as a slight increase in MIB and trihalomethanes (CHCl3). Pre– or intermediate chlorination seem to be an effective treatment option for the dinoflagellate C. hirundinella to be rendered immobile and thereby assisting in its coagulation process. The use of pre– or intermediate chlorination to effectively treat source waters containing high concentrations of C. hirundinella is a viable option to consider. However, the organic compounds in the water should be monitored and the EC50 value for each source water composition should be determined carefully as to restrict cell lysis and subsequent release of organic compounds into the water. / Thesis (M.Sc. (Environmental Science))--North-West University, Potchefstroom Campus, 2012.
6

Vliv vodního součinitele na vlastnosti vápenných malt / Effect of water-lime ratio on the properties of lime mortars.

Kurfürstová, Nela January 2016 (has links)
Diploma thesis gives a brief description of the traditional technology of preparation of lime mortars for restoration of historical buildings. The theoretical part is focused on the preparation of lime mortars traditional methods, using appropriate materials for making and influence amount of water. Attention is also paid to the events that take place in the setting and hardening of lime mortar. In the experimental part of the research was conducted, which aimed to assess the influence of water-cement ratio and mixing ratio (binder to filler) on the properties of lime mortars. At various times were measured mechanical properties, density, shrinkage, frost resistance and porosity. The mortar was also carried out thermal analysis and found to contain calcium carbonate. Acquired knowledge could help in the reconstruction of historical buildings.

Page generated in 0.031 seconds