• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 615
  • 191
  • 101
  • 72
  • 70
  • 32
  • 21
  • 19
  • 15
  • 11
  • 11
  • 10
  • 8
  • 8
  • 8
  • Tagged with
  • 1438
  • 247
  • 217
  • 216
  • 191
  • 89
  • 86
  • 80
  • 80
  • 78
  • 71
  • 64
  • 64
  • 64
  • 61
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
131

Ultrasonic Wave Propagation on an Inclined Solid Half-Space Partially Immersed in a Liquid

Dao, Cac Minh January 2007 (has links)
The interaction between a bounded ultrasonic beam and a liquid wedge over a solid half-space is studied theoretically as well as experimentally. A semi-analytical technique called Distributed Point Source Method (DPSM) is adopted for modeling the ultrasonic field in a wedge-shaped fluid structure on a solid half-space. This study is important for analyzing and understanding the propagation of ultrasonic waves used for underwater communications and inspections. A better understanding of the elastic wave propagation in water and in submerged marine strata near the seashore requires extensive investigations of such problem geometries. The semi-analytical technique used in this dissertation considers a bounded acoustic beam striking a fluid-solid interface between a fluid wedge and a solid half-space. Solution of this problem is beyond the scope of the currently available analytical methods when the beam is bounded. However, it is important to model the bounded beams because, in all underwater communications and inspections, bounded beams are used. Currently, only numerical method [Boundary Element Method (BEM) or Finite Element Method (FEM)] based packages (e.g., PZFlex) are in principle capable of modeling ultrasonic fields in such structures. However, these packages are not very accurate and are very CPU-intensive for high-frequency ultrasonic problems. At high frequencies, FEM- and BEM-based packages require huge amount of computation memory and time for their executions that the DPSM technique can avoid. The effect of the angle variation between the fluid-solid interface and the fluid wedge on the wave propagation characteristics is studied and presented.
132

Ultrasonic Non-Destructive Evaluation: Impact Point Prediction and Simulation of Ultrasonic Fields

Hajzargarbashi, Talieh January 2011 (has links)
This work has two parts. The first part of the work (in Chapters II, III, IV and V) presents a method for locating the point of impact using acoustic emission techniques.The second part of the work is modeling the ultrasonic fields generated by one and two spherical cavities placed in front of a point focused acoustic lens using the semi-analytical distributed point source method (DPSM).Acoustic emission (AE) refers to the generation of transient elastic waves during the rapid release of energy from localized sources within a material.In this work the acoustic emission has been used for locating the point of impact on anisotropic and homogeneous or non-homogenous flat plates and cylindrical structures. In these cases the wave speed is a function of the angle of propagation. An optimization function is introduced and minimized to get the location of the impact point.This method has been used on a flat (fiber reinforced polymer) plate. The proposed new objective function reduces the amount of time needed for solving the problem and improves the accuracy of prediction. The method is extended to cylindrical structures for which the objective function is written in cylindrical coordinates and the method is tested on a FRP shell.In Chapter IV an alternative method is introduced called the near-field acoustic emission (AE) beamforming method. It has been used to estimate the source locations by using a small array of sensors closely placed in a local region. To validate the effectiveness of the AE beamforming method a series of experiments on a FRP shell are conducted. The experimental results demonstrate that the proposed method can correctly predict the point of impact.The semi-analytical mesh-free technique DPSM is then used to model the ultrasonic field in front of a point focused acoustic lens; anomalies such as cavities are introduced in the medium in front of the acoustic lens and the effect of those cavities are studied. Solution of this problem is necessary to get an idea about when two cavities placed in close proximity can be distinguished by an acoustic lens and when it is not possible.
133

ULTRASONIC DETERMINATION OF URINARY BLADDER WALL LOCATIONS.

McIntosh, Michael Philip. January 1982 (has links)
No description available.
134

The influence of tool excitation on material deformation

Rosochowska, Malgorzata January 2004 (has links)
No description available.
135

Scattering of ultrasound by blood with reference to the analysis of doppler signals

Routh, H. F. January 1987 (has links)
No description available.
136

Ultrasonic surface waves seam tracking and penetration control in thin materials

Egharevba, F. E. January 1988 (has links)
No description available.
137

Generation of high resolution tomographic images for NDT applications

Hall, Ian Damon January 2001 (has links)
Techniques for the generation of quantitative ultrasonic images in non-destructive testing have generally involved a substantial cost in terms of data storage and computational time, and have thus found limited application. Preference has therefore been given to the more straightforward imaging methods, such as main beam projection, which detect the presence of defects and provide a limited flaw sizing capability. The relatively small number of flaws requiring detailed examination, coupled with substantial increases in available data storage and computational power, have made it possible to use a number of straightforward tomographic reconstruction methods to produce high resolution images of flaws contained within the material under examination. A set of these images are then fused together using a novel fuzzy logic image fusion technique into a single image from which more accurate measurements of flaw size, shape and orientation can be made. However, if the quality of the raw A-scan data is not sufficiently high then the data will be filtered using Maximum Likelihood Deconvolution (MLD). The aim of this blind deconvolution method is to improve the time resolution and Signal to Noise Ratio of the A-scan data with only knowledge obtained from the data, this is in contrast to the majority of techniques currently used for this purpose. The three tomographic methods which have been implemented in this work are Reflection tomography, Time-of-flight Diffraction tomography and Transmission tomography. In addition a Single Bounce Image Enhancement method has been developed to improve the images. Selection of images used in the fusion process depends on the nature of the flaw, as each of these methods identifies different characteristics of the flaw shape. The components of the imaging system have been validated experimentally by the generation of high resolution images from a variety of flaws contained within cylindrical aluminium test specimens.
138

Ultrasonic study of the compressibility of globular proteins.

January 1985 (has links)
by Lo Yuk-ming. / Bibliography: leaves 56-59 / Thesis (M.Ph.)--Chinese University of Hong Kong, 1985
139

Guided wave evaluation of pipes using the first and second order torsional wave mode

Deere, Matthew January 2017 (has links)
Guided wave inspection is a form of ultrasonic testing used for non-destructive testing (NDT). Guided waves are capable of propagating long distances bounded by the geometries of the specimen, such as pipes and plates. The technique is commercially used to detect defects in pipelines and is capable of a full volumetric screening many metres (often up to around 100m) from one location. Fundamental axisymmetric wave modes are used to inspect pipelines and are used to quantify defects and features. However, as the technology has progressed, a demand for improving defect sensitivity, spatial resolution and developing the technology into new fields has been recognised. Operating at medium range frequencies is one possibility that could provide the increase in defect sensitivity and spatial resolution required that may not be achieved at low range frequencies. The use of higher order wave modes could also provide additional information useful for defect sizing. Guided wave inspection is a complex ultrasonic technique due to the many wave modes that exist and testing at medium range frequencies requires some challenges to be overcome. The research presented here investigates the potential of using the second order torsional wave mode at medium range frequencies and provides a new sizing technique that for some applications is likely to offer advancement in guided wave inspection and monitoring. The approach firstly included the design and implementation of a setup for analysing the complex signal responses in order to access the higher order torsional wave mode T(0,2) for defect sizing. An efficient method of using FEA has been presented using segmented models to provide the capability of analysing defects with small increment changes that could not be achieved using a full 3D model of the pipe. Using a pipe segment to virtually represent the full pipe also allowed small changes in defect size to be investigated, which would otherwise be extremely difficult to accurately machine experimentally. The FEA modelling technique is also based on broadband signals in comparison to the conventional approach of using narrowband signals and is capable of obtaining a wide frequency spectrum from one model, which significantly reduces the number of models needed to conduct a frequency analysis. Following on from this work, a high density transducer array was developed and compared against a conventional transducer array used in guided wave inspection for the purpose of medium range frequency inspection, which can also be applied to conventional low range frequency inspection. Finally, a new defect sizing method using T(0,2) is presented, which is capable of predicting the depth using peak amplitude responses from spectral analysis and by comparing this to the cut-off frequency of the remaining wall thickness of the defect. The technique has the potential to improve defect sizing, defect sensitivity, increase spatial resolution, and increase the performance of medium range inspection.
140

Car Automatic Braking System : based on original reverse warning system

Ronghong, Xiao, Hai, Wang January 2012 (has links)
An original ultrasonic reverse warning system is a new system that can assist drivers while car is braking. It is includes ultrasonic emitter and receiver that can producing and receiving the ultrasonic waves to determine the distance between car and obstacle. But it is not good enough for the safety of cars, in this paper, we are meant to design a system that can help drivers stop the car automatically, an electronic circuit was constructed. According to this circuit we design, a signal was produced to the braking system of car based on the distance between car and obstacle for a safe braking purpose. Error is also discussed and during the experiment, the improvement for the original system has also achieved.

Page generated in 0.0593 seconds