• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 615
  • 191
  • 101
  • 72
  • 70
  • 32
  • 21
  • 19
  • 15
  • 11
  • 11
  • 10
  • 8
  • 8
  • 8
  • Tagged with
  • 1438
  • 247
  • 217
  • 216
  • 191
  • 89
  • 86
  • 80
  • 80
  • 78
  • 71
  • 64
  • 64
  • 64
  • 61
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
101

Experimental and computational study of an ultrasonic atomizer

Phanphanit, Phattharawdee January 2011 (has links)
A fountain type ultrasonic atomizer was chosen to be a possible device to be used to assist in the alleviation of global warming. Atomization of seawater by an ultrasonic atomizer will enhance more cloud condensation nuclei; as a result, more UV radiation will be reflected back into the space. There are two crucial spray characters: droplet size and the number of droplets. The droplet size needs to be in a certain size range, so that they can stay in the atmosphere. The number of droplets needs to be as high as possible; the more cloud nuclei, the more UV radiation is reflected. The characteristics of sprays are affected by many parameters: liquid properties and the atomizer design. In this study, we characterized two different atomizers: one with a fixed frequency atomizer at 1.72 MHz and one with adjustable frequency and voltage atomizer with a calculated resonant frequency of 2.24 MHz. In addition for the fixed atomizer, different liquid media: tap water (20° C), hot water (46° C), cold water (14° C) and salt waters with different percents salinity (2% - 3.5% by volume), were studied. A Phase Doppler Anemometer was used to measure the characteristics of sprays: droplet velocity, droplet size and number of droplets in a required size range. It was found that the droplet velocity is barely affected by the liquid properties and liquid depth except for the hot water. The relatively high temperature liquid appears to alter the characteristics of the piezo disk; in addition, the inconsistent temperature could vary the characteristics of the spray. The droplet size is strongly dependent on liquid properties and frequency of vibration. The number of droplets is obviously affected by liquid properties and atomizer designs; there is not yet a known correlation between the number of droplets and other parameters. A theoretical study was undertaken in order to compare predicted acoustic properties of acoustic waves with the measured number of droplets generated. The mathematical model was constructed based on applying boundary conditions to a general 2- Dimensional wave equation in cylindrical coordinates. The predicted results satisfy the boundary conditions very well. Since we deal with high frequency acoustic waves, the number of wave modes used in the prediction is significant. It is important to be ensure that all the cut-on wave modes are included otherwise the predicted results will not be very accurate. The more modes that are included, the more computer storage is required; therefore, the number of modes need to be enough to obtain accurate result but not too many to be over the limit of computer storage. The high number of modes used also decreases computer speed, increasing the running time. The mathematical model was used to predict acoustic properties. It was found that the predicted maximum acoustic pressure inside the central small region, where the disk is located, has the best correlation with the number of droplets for all liquid media and all operating conditions. The mathematical model can only predict which operating condition and atomizer design will provide the maximum acoustic pressure. As a result, we can optimize the fountain type ultrasonic atomizer in order to obtain the best result, suiting each application applied. If the geometry is changed, the model is also required to be re-written so that it will predict accurate results.
102

Phenomena in the propagation of ultrasonic vibrations in nickel wire

Coulter, John Dallaway January 1987 (has links)
Bibliography: pages 113-114. / A wave-train-echo technique, with repeated forward-and-return travels of the signal, was used to study the propagation of ultrasonic waves in nickel wire. In particular, the origin of often observed anomalous waves in nickel wire was investigated. A possible explanation of an aspect of the phenomenon was devised. During continuing investigation of the phenomenon of anomalous waves, an unexpected effect of stress on the attenuation of ultrasonic waves in annealed nickel wire was observed. Attention was transferred to the new phenomenon, and extensive experimental work carried out to measure the effects of direct and flexural stress on the attenuation. The effect was found to occur with torsional stress also. Computer-aided determinations of attenuation were made from the experimental readings of signal strength for variations of stress and signal frequency. A detailed study and documentation of known processes of attenuation of acoustic vibrations in solids was made. Indications of the nature of the mechanism of stress-dependent attenuation have been sought, and a tentative conclusion arrived at.
103

A study of frequency variation in ultrasonic transducers

Shieh, Long-Chin January 1974 (has links)
No description available.
104

Giant quantum ultrasonic attenuation in semiconductors.

Reiss, Michael Levi. January 1969 (has links)
No description available.
105

Design and Testing of a Laboratory Ultrasonic Data Acquisition System for Tomography

Johnson, Wesley Byron 03 February 2005 (has links)
Geophysical tomography allows for the measurement of stress-induced density changes inside of a rock mass or sample by non-invasive means. Tomography is a non-destructive testing method by which sensors are placed around a sample and energy is introduced into the sample at one sensor while the other sensors receive the energy. This process is repeated around the sample to obtain the desired resolution. The received information is converted by a mathematical transform to obtain a tomogram. This tomogram shows a pixelated distribution of the density within the sample. Each pixel represents an average value at that point. The project discussed in this paper takes the principle of ultrasonic tomography and applies it to geomechanics. A new instrumentation system was designed to allow rapid data collection through varying sample geometries and rock types with a low initial investment. The system is composed of sensors, an ultrasonic pulser, a source switchbox, and analog to digital converters; it is tied together using a LabVIEW virtual instrument. LabVIEW is a graphical development environment for creating test, measurement, and other control applications. Using LabVIEW, virtual instruments (VIs) are created to control or measure a process. In this application LabVIEW was used to create a virtual instrument that was automated to collect the data required to construct a tomogram. Experiments were conducted to calibrate and validate the system for ultrasonic velocity determination and stress redistribution tomography. Calibration was conducted using polymethylmethacrylate (PMMA or Plexiglas) plates. Uniaxial loads were placed on limestone and sandstone samples. The stress-induced density contrasts were then imaged using the acquisition system. The resolution and accuracy of the system is described. The acquisition system presented is a low-cost solution to laboratory geophysical tomography. The ultimate goal of the project is to further the ability to non-invasively image relative stress redistribution in a rock mass, thereby improving the engineer's ability to predict failure. / Master of Science
106

Coupled electrical and acoustic modeling of viscous fluid ejectors

Loney, Drew Allan 07 January 2016 (has links)
The focus of this dissertation is the development of a fundamental understanding of the acoustics and piezoelectric transducer governing the operation of piezoelectric inkjets and horn-based ultrasonic atomizers when utilizing high viscosity working fluids. This work creates coupled, electro-mechanical analytical models of the acoustic behavior of these devices by extending models from the literature which make minimal simplifications in the handling terms that account for viscous losses. Models are created for each component of the considered fluid ejectors: piezoelectric transducers, acoustic pipes, and acoustic horns. The acoustic pipe models consider the two limited cases when either the acoustic boundary layer or attenuation losses dominate the acoustic field and are adapted to account for changes in cross-sectional area present in acoustic horns. A full electro-mechanical analytical model of the fluid ejectors is formed by coupling the component models using appropriate boundary conditions. The developed electro-mechanical model is applied to understand the acoustic response of the fluid cavity alone and when combined with the transducer in horn-based ultrasonic atomizers. An understanding of the individual and combined acoustic response of the fluid cavity and piezoelectric transducer allow for an optimal geometry to be selected for the ejection of high viscosity working fluids. The maximum pressure gradient magnitude produced by the atomizer is compared to the pressure gradient threshold required for fluid ejection predicted by a hydrodynamic scaling analysis. The maximum working fluid viscosity of the standard horn-based ultrasonic atomizer and those with dual working fluid combinations, a low viscosity and a high viscosity working fluid to minimize viscous dissipation, is established to be on the order of 100mPas. The developed electro-mechanical model is also applied to understand the acoustic response of the fluid cavity and annular piezoelectric transducer in squeeze type ejectors with high viscosity working fluids. The maximum pressure gradient generated by the ejector is examined as a function of the principle geometric properties. The maximum pressure gradient magnitude produced by the ejector is again compared to the pressure gradient threshold derived from hydrodynamic scaling. The upper limit on working fluid viscosity is established as 100 mPas.
107

Applications of non-invasive vascular imaging techniques in cardiovascular risk assessment and management

Hu, Rui, 胡瑞 January 2006 (has links)
published_or_final_version / abstract / Medicine / Master / Master of Philosophy
108

Use of three-dimensional ultrasound in the prediction of homozygous alpha0-thalassemia

Yeung, Tin-wai., 楊天慧. January 2008 (has links)
published_or_final_version / Obstetrics and Gynaecology / Master / Master of Philosophy
109

Modelagem de ensaios não destrutivos por ultra-som utilizando o método dos elementos finitos. / Modeling of ultrasonic non destructive evaluation using FEM.

San Miguel Medina, Jimmy Ernesto 21 December 2005 (has links)
Os modelos existentes de propagação de ondas de ultra-som em meios líquidos e sólidos consideram a geração e recepção das ondas produzidas por transdutores simulados segundo o modelo do pistão plano ou com excitações cuja amplitude varia radialmente no pistão. Esses modelos são simplificados e não explicam completamente o comportamento real de transdutores de ultra-som interagindo com líquidos e sólidos. As verificações experimentais de propagação da onda de ultra-som em meios líquidos mostram que a onda de borda é diferente da onda plana. Observa-se também a existência de outras ondas não previstas nos modelos anteriores. Essas ondas são conhecidas como ondas head. A utilização do método dos elementos finitos (MEF) para a modelagem de propagação de ondas de ultra-som, incluindo o transdutor piezelétrico, permite a obtenção de resultados realísticos, conseguindo assim descrever com maior precisão o comportamento do transdutor e das ondas de ultra-som se propagando em diferentes meios e interagindo com defeitos que se comportam como refletores. Apesar disso, os resultados desses modelos dependem das características precisas dos materiais que compõem o transdutor. O transdutor de ultra-som é composto por uma cerâmica piezelétrica, por camadas de casamento e de retaguarda que geralmente são compósitos de epóxi com alumina e epóxi com tungstênio respectivamente, e pelo encapsulamento. Neste trabalho é analisada a resposta transiente de um transdutor circular de 2 MHz, com diâmetro de 12,7 mm, banda larga. O modelo do transdutor foi implementado com o método de elementos finitos. A análise transiente pelo MEF é implementada com o software ANSYS. Na primeira parte do trabalho o transdutor é analisado no modo de transmissão em água. Os resultados do modelo com MEF foram comparados com os resultados do modelo do pistão plano e com verificações experimentais obtidas em tanque de imersão com um hidrofone tipo agulha. Na segunda parte é realizada a análise do transdutor operando em modo pulso-eco radiando em peças de teste com e sem defeito, utilizando acoplamento direto e acoplamento por buffer de água. Os resultados do MEF apresentam boa concordância com os resultados obtidos experimentalmente. / Simple models for ultrasonic wave propagation in liquid and solid media consider the wave generation and reception by transducers that behave as plane pistons. These models are simplified and they do not explain completely the behavior of an ultrasonic transducer when interacting with other media. Experimental verifications of ultrasonic wave propagation in liquid show that the pressure amplitude of the edge wave is different from the plane wave. Also it is observed the existence of other types of waves not foreseen in these previous models. These waves are known as head waves. More realistic models for ultrasonic wave propagation are obtained using the finite element method (FEM). These models include the piezoelectric transducer, thus, describing with higher precision the behavior of the transducer and the ultrasonic waves propagating in different mediums and interacting with defects. The precision of the models depends on the accurate determination of the mechanical and electrical properties of the involved materials. The ultrasonic transducer is composed by a piezoelectric ceramic, a matching layer and a backing layer that are generally made by epoxy/alumina and epoxy/tungsten composites respectively. In this work it is analyzed the transient response of a circular transducer of 12.7 mm diameter and 2 MHz center frequency. The transducer model was implemented with the finite element method. The FEM transient analysis was executed in the ANSYS software. In the first part of the work the transducer is analyzed in transmission mode in water and the MEF results are compared with the plane piston model and with experimental verifications using a hydrophone. In the second part it is carried at the transducer analysis operating in pulse-echo mode radiating into test pieces with and without defects, using direct and water buffer coupling. The MEF results show good agreement with the results obtained experimentally in the laboratory.
110

The application of ablative laser ultrasonics to an aluminum plate, titanium tube, and welded joints

Butler, Chad L. 04 June 1996 (has links)
Laser ultrasonics can be used to nondestructively evaluate structures to determine the existence and location of surface and interior flaws. The goal of this research was to determine if laser ultrasonic techniques can be applied to the inspection of aluminum plate. titanium tubes, and large welded plate structures. The research was carried out with a Q-switched pulsed ruby laser emitting light of 694 nm wavelength. Ultrasonic waves were experimentally generated and recorded in the aluminum plate and the titanium tube. A comprehensive literature study was completed to determine if the technique can be applied to welded structures. For the two experimental cases, the ultrasonic waves were received by a piezoelectric pinducer which was located on the opposite side of the plate. and on the outside of the tube. A digital oscilloscope captured the signals from the pinducer. The signals were then analyzed to determine echo spacing and frequency content. The physical characteristics of the laser pulse such as the energy and full-width-half-height and amplitudes were measured via a photodiode system and a calorimeter. The aluminum plate confirmed that the system was functioning properly, as the ultrasonic echoes that were generated matched the expected results from previous experimentation. The titanium tube data turned out to be difficult to interpret due to the complex geometry and mode conversion. The welding research showed that ultrasound can be used to identify many types of flaws in a welded joint. Currently, few researchers have applied the laser based ultrasound to flaw detection in finished welds, although several have looked at using the laser ultrasound as an input to a control system for a weld in progress. The literature research uncovered the need for further studies on the application of laser based ultrasound to flaw detection in completed welds. / Graduation date: 1997

Page generated in 0.0314 seconds