• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 763
  • 747
  • 174
  • 100
  • 93
  • 71
  • 40
  • 22
  • 19
  • 12
  • 11
  • 9
  • 7
  • 4
  • 4
  • Tagged with
  • 2407
  • 361
  • 357
  • 294
  • 200
  • 179
  • 165
  • 164
  • 156
  • 130
  • 127
  • 121
  • 120
  • 107
  • 104
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
661

Transkutane und intraabdominale Ultraschalluntersuchungen des Pankreas am stehenden Rind

Klein, Astrid 03 April 2012 (has links)
This paper highlights two methods of examining the bovine pancreas by means of ultrasound, with a view to identifying advantages and disadvantages of the two techniques as well as testing and comparing their practicability. The goal is to evaluate the applicability of this intraoperative procedure to large animals - it is quite commonly used on humans - as well as present the resulting findings with regard to the ultrasonographic anatomy of the bovine pancreas. The sample consisted of 15 female beef cattle, none of which displayed evidence of any pancreatopathy based on their medical history, clinical examinations, and laboratory diagnostic testing. Transcutaneous and intraoperative sonographic examinations were performed on all 15 animals.
662

Evaluation of Point of Care Ultrasound Training for Midwives

Johnston, Bronte K January 2021 (has links)
MSc. Thesis / Introduction: In 2018, the College of Midwives of Ontario expanded the scope of practice for registered midwives to include performing point of care ultrasound (POCUS) to aid their obstetrical clinical assessments. This project evaluated learner sonography knowledge, skill acquisitions, and integration of this technology following an innovative POCUS curriculum developed for midwives to understand the impacts of this training. Methods: Concurrent triangulation with mixed methods was used in this study through surveys and interviews. First, the surveys were used to collect data across four time points including before and after the intervention. Five- and seven-point Likert scale questions were analyzed through descriptive statistics. Open-ended questions were qualitatively analyzed using thematic analyses. Second, the semi-structured interviews were conducted to better understand participants’ attitudes and clinical behaviours. Interviews were coded and analyzed using a combination of Corbin and Strauss as well as Charmaz approaches to grounded theory. Results: The findings demonstrated how there was a positive growth in learner comfort with POCUS and a desire to continue using it during clinical practice. The frequency of POCUS use within antenatal care increased with common applications including fetal presentation and assessment of pregnancy viability. The interviews highlighted five themes: facilitating learning, improving care, refining the role of the midwife, serving community, and maintaining competency. Access to clinical placements and the cost of a device were identified as barriers to promoting POCUS skill sets. Participants who had access to a device and completed the clinical practicum are continuing to use sonography within their clinics to provide more comprehensive client care. Conclusions: This project demonstrates how POCUS training can positively impact midwives particularly with aiding clinical decision making such as those regarding fetal viability and presentation. However, the challenges with obtaining a clinical practicum to ensure competency and the cost and access to a device, are significant barriers that unless they are addressed, may result in minimal integration within community practices. / Thesis / Master of Health Sciences (MSc) / The ability to conduct ultrasounds has recently been included in Ontario midwives’ scope of practice. This project evaluated a newly developed Point of Care Ultrasound (POCUS) curriculum for practicing midwives to understand how midwives can learn and apply POCUS into their clinical work. Learners completed surveys at four time points from pre-course to one-year post-course to share their experiences of knowledge and skill acquisition and applying this training to their clinical work. Five midwives also participated in an interview to share their perspectives about the course more in-depth. It was found that Ontario midwives were very interested to learn POCUS to improve client care. Unfortunately, they struggled finding time and opportunities to refine their sonography skills such as securing a clinical practicum or the funds to purchase a device. However overall, POCUS in midwifery was well received, this technology and its respective education should continue to be supported in Ontario.
663

Dynamics of smart materials in high intensity focused ultrasound field

Bhargava, Aarushi 06 May 2020 (has links)
Smart materials are intelligent materials that change their structural, chemical, mechanical, or thermal properties in response to an external stimulus such as heat, light, and magnetic and electric fields. With the increase in usage of smart materials in many sensitive applications, the need for a remote, wireless, efficient, and biologically safe stimulus has become crucial. This dissertation addresses this requirement by using high intensity focused ultrasound (HIFU) as the external trigger. HIFU has a unique capability of maintaining both spatial and temporal control and propagating over long distances with reduced losses, to achieve the desired response of the smart material. Two categories of smart materials are investigated in this research; shape memory polymers (SMPs) and piezoelectric materials. SMPs have the ability to store a temporary shape and returning to their permanent or original shape when subjected to an external trigger. On the other hand, piezoelectric materials have the ability to convert mechanical energy to electrical energy and vice versa. Due to these extraordinary properties, these materials are being used in several industries including biomedical, robotic, noise-control, and aerospace. This work introduces two novel concepts: First, HIFU actuation of SMP-based drug delivery capsules as an alternative way of achieving controlled drug delivery. This concept exploits the pre-determined shape changing capabilities of SMPs under localized HIFU exposure to achieve the desired drug delivery rate. Second, solving the existing challenge of low efficiency by focusing the acoustic energy on piezoelectric receivers to transfer power wirelessly. The fundamental physics underlying these two concepts is explored by developing comprehensive mathematical models that provide an in-depth analysis of individual parameters affecting the HIFU-smart material systems, for the first time in literature. Many physical factors such as acoustic, material and dynamical nonlinearities, acoustic standing waves, and mechanical behavior of materials are explored to increase the developed models' accuracy. These mathematical frameworks are designed with the aim of serving as a basic groundwork for building more complex smart material-based systems under HIFU exposure. / Doctor of Philosophy / Smart materials are a type of intelligent materials that have the ability to respond to external stimuli such as heat, light, and magnetic fields. When these materials respond, they can change their structural, thermodynamical, mechanical or chemical nature. Due to this extraordinary property, smart materials are being used in many applications including biomedical, robotic, space, microelectronics, and automobile industry. However, due to increased sensitivity and need for safety in many applications, a biologically safe, wireless, and efficient trigger is required to actuate these materials. In this dissertation, sound is used as an external trigger to actuate two types of smart materials: shape memory polymers (SMPs) and piezoelectric materials. SMPs have an ability to store a temporary (arbitrarily deformed) shape and return to their permanent shape when exposed to a trigger. In this dissertation, focused sound induced thermal energy acts as a trigger for these polymers. A novel concept of focused ultrasound actuation of SMP-based drug delivery capsules is proposed as a means to solve some of the challenges being faced in the field of controlled drug delivery. Piezoelectric materials have an ability to generate electric power when an external mechanical force is applied and vice versa. In this study, sound pressure waves supply the external force required to produce electric current in piezoelectric disks, as a method for achieving power transfer wirelessly. This study aims to solve the current problem of low efficiency in acoustic power transfer systems by focusing sound waves. This dissertation addresses the fundamental physics of high intensity focused ultrasound actuation of smart materials by developing comprehensive mathematical models and systematic experimental investigations, that have not been performed till now. The developed models enable an in-depth analysis of individual parameters including nonlinear material behavior, acoustic nonlinearity and resonance phenomena that affect the functioning of these smart systems. These mathematical frameworks also serve as groundwork for developing more complex systems.
664

Ultrasound-mediated Topical Delivery of Econazole nitrate for Treating Raynaud’s Phenomenon

Daftardar, Saloni B. January 2017 (has links)
No description available.
665

Passive Imaging and Measurements of Acoustic Cavitation during Ultrasound Ablation

Salgaonkar, Vasant Anil January 2009 (has links)
No description available.
666

Ex-situ Inspection and Ultrasonic Metamaterial Lens Enabled Noncontact In-situ Monitoring of Solid-state Additive Manufacturing Process for Aluminum Alloy 6061

Yang, Teng 05 1900 (has links)
Additive friction stir deposition (AFSD) is an innovative solid-state manufacturing process capable of producing parts with fine, equiaxed grains. However, due to the complexity of extensive plastic deformation and the viscoplastic behavior of metallic materials at elevated temperatures, the analysis of material flow and stress evolution during AFSD remains at a rudimentary stage. As a developing technology, gaining a deeper understanding of the underlying physical behaviors behind the processing is appreciable. This study comprises three objectives: investigating microstructure and stress-induced acoustic wave propagation behaviors, implementing non-contact in-situ monitoring in AFSD of aluminum alloy 6061 using a far-collimation acoustic metamaterial lens, and ex-situ analysis of parameter-dependent mechanics influences in AFSD of aluminum alloys 6061. To achieve this, a novel ultrasound in-situ monitoring method, along with ex-situ residual stress measurements, is facilitated by MD and FEA simulations and been experimentally verified. Real-time asymmetric property distribution and abnormal parameter-dependence acoustic wave phase change during the AFSD of aluminum alloy 6061 were identified through the in-situ monitoring and further investigated in detail through ex-situ inspection. A key parameter, effective viscosity, was introduced to the parameter windows selections, which can affect the thermo-fluidic mechanics during the process, thereby altering the physical aspects, mechanical properties, and microstructures.
667

Ultrasound assisted processing of solid state pharmaceuticals : the application of ultrasonic energy in novel solid state pharmaceutical applications, including solvent free co-crystallisation (SFCC) and enhanced compressibility

Alwati, Abdolati A. M. January 2017 (has links)
The objective of this study was to develop a new method for co-crystal preparation which adhered to green chemistry principles, and provided advantages over conventional methods. A novel, solvent-free, high-power ultrasound (US) technique, for preparing co-crystals from binary systems, was chosen as the technology which could fulfil these aims. The application of this technology for solid state co-crystal preparation was explored for ibuprofen-nicotinamide (IBU-NIC), carbamazepine-nicotinamide (CBZ-NIC) and carbamazepine-saccharin (CBZ-SAC) co-crystals. The effect of different additives and processing parameters such as power level, temperature and sonication time on co-crystallisation was investigated. Characterisation was carried out using DSC, PXRD, FTIR, Raman and HPLC. In addition, an NIR prediction model was developed and combined with multivariate analysis (PLS) and chemometric pre-treatments. It was found to be a robust, reliable and rapid method for the determination of co-crystal purity for the IBU-NIC and CBZ-NIC pairs. Co-crystal quantification of US samples helped to optimise the US method. Finally, a model formulation of paracetamol containing 5% and 10% PEG 8000 was ultrasonicated at maximum power with different exposure times. A comparison of technological and physicochemical properties of the resulting tablets with those of the tablets obtained using the pressing method evidenced significant differences. This suggested that US energy dissipation (mechanical and thermal effects) was the main mechanism which caused the PAR form I tabletability to improve. It was found that the ultrasound–compacted tablets released the drug at a slower rate compared to pure PAR. This technique was shown to be useful for improving tabletability for low-compressible drugs without the need to use a conventional tabletting machine.
668

Fantomy pro oftalmologický ultrazvukový systém / Phantoms for ultrasound system in ophthalmology

Fabík, Vojtěch January 2013 (has links)
In our work we have studied the ultrasonic imaging systems and their use in ophthalmology, especially with the device Nidek 4000. We described ophthalmological examination methods. In addition, we are using the simulation program Field II. It simulated eye phantom and created his B-scan and biometry, where we compared the effects of different central frequency ultrasonic probes and different speeds of sound in the resulting values. We also created phantoms using agarose gel and materials of different properties. On phantoms, we studied the effect of the velocity of ultrasound in measurement results, effect of the concentration of the agarose gel to the velocity of sound. And we created phantoms simulating the human eye. Measurement protocol was created for use in teaching.
669

Měření vlastností oftalmologického ultrazvukového systému / Properties measurement of ultrasound system in ophthalmology

Grebíková, Lucie January 2014 (has links)
The thesis deals with physical principles of ultrasound with following specialization on ophtalmic ultrasound system Nidek Echoscan 4000 and its properties. And also it deals with description of investigative techniques in ophthalmology (A-mode, B-mode, biometry and pachymetry). Next, they was suggested procedures of measurement and that is spatial resolution (axial and lateral spatial resolution) and propagation speed of ultrasound depending on the temperature. Then these properties was tested on laboratory phantoms of eye – ETETECH LTD. and Multipurpose Ultrasound Phantom but on created phantoms of eye too, which will be made from agarose gel with build-in materail (fishing line, plastic film, plastic bag and rubber). At the end, measured values was processed in the generated program.
670

Stanovení vlastností ultrazvukových sond / Properties of ultrasound probes

Rusina, Michal January 2015 (has links)
This master thesis deals with the measurement properties of ultrasound probes. Ultrasound probes and their parameters significantly affect the quality of the final image. Values of pa-rameters of the probes may change due to their use, because probes may be damaged and the final image may no longer be correct. For these reasons the measurements of parameters of probes are very important. In this master thesis there are described and implemented the possibility of measuring the spatial resolution, focal zone, the sensitivity of the probe and measuring the length of the dead zone. Two ultrasonic phantoms were used for measuring. In the practical part there was created the program called Mereni_parametru, which allows to determine the value of four parameters from captured images of the phantom. Further, there are listed and described measured values for five ultrasonic probes. Results for two of these probes are then compared with the parameters given by the manufacturers.

Page generated in 0.0622 seconds