• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 76
  • 8
  • 7
  • 3
  • 3
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 117
  • 117
  • 117
  • 48
  • 43
  • 27
  • 21
  • 18
  • 17
  • 17
  • 15
  • 15
  • 15
  • 13
  • 12
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

An enhanced cross-layer routing protocol for wireless mesh networks based on received signal strength

Amusa, Ebenezer Olukayode January 2010 (has links)
The research work presents an enhanced cross-layer routing solution for Wireless Mesh Networks (WMN) based on Received Signal Strength. WMN is an emerging technology with varied applications due to inherent advantages ranging from self-organisation to auto-con guration. Routing in WMN is fundamen- tally achieved by hop counts which have been proven to be de cient in terms of network performance. The realistic need to enhance the link quality metric to improve network performance has been a growing concern in recent times. The cross-Layer routing approach is one of the identi ed methods of improving routing process in Wireless technology. This work presents an RSSI-aware routing metric implemented on Optimized Link-State Routing (OLSR) for WMN. The embedded Received Signal Strength Information (RSSI) from the mesh nodes on the network is extracted, processed, transformed and incorporated into the routing process. This is to estimate efficiently the link quality for network path selections to improved network performance. The measured RSSI data is filtered by an Exponentially Weighted Moving Average (EWMA) filter. This novel routing metric method is called RSSI-aware ETT (rETT). The performance of rETT is then optimised and the results compared with the fundamental hop count metric and the link quality metric by Expected Transmission Counts (ETX). The results reveal some characteristics of RSSI samples and link conditions through the analysis of the statistical data. The divergence or variability of the samples is a function of interference and multi-path e effect on the link. The implementation results show that the routing metric with rETT is more intelligent at choosing better network paths for the packets than hop count and ETX estimations. rETT improvement on network throughput is more than double (120%) compared to hop counts and 21% improvement compared to ETX. Also, an improvement of 33% was achieved in network delay compared to hop counts and 28% better than ETX. This work brings another perspective into link-quality metric solutions for WMN by using RSSI to drive the metric of the wireless routing protocol. It was carried out on test-beds and the results obtained are more realistic and practical. The proposed metric has shown improvement in performance over the classical hop counts metric and ETX link quality metric.
22

Optimizing opportunistic communication in wireless networks

Han, Mi Kyung 17 November 2011 (has links)
Opportunistic communication leverages communication opportunities arising by chance to provide significant performance benefit and even enable communication where it would be impossible otherwise. The goal of this dissertation is to optimize opportunistic communication to achieve good performance in wireless networks. A key challenge in optimizing opportunistic communication arises from dynamic and incidental nature of communication. Complicated wireless interference patterns, high mobility, and frequent fluctuations in wireless medium make the optimization even harder. This dissertation proposes a series of optimization frameworks that systematically optimizes opportunistic communication to achieve good performance in wireless mesh networks and vehicular networks. We make the following three major contributions: First, we develop novel algorithms, techniques, and protocols that optimize opportunistic communication of wireless mesh network to achieve good, predictable user performance. Our framework systematically optimizes end-to-end performance (e.g., total throughput). It yields significant improvement over existing routing schemes. We also show that it is robust against inaccuracy introduced by dynamic network conditions. Second, we propose a novel overlay framework to exploit inter-flow network coding in opportunistic routing. In this framework, an overlay network performs inter-flow coding to effectively reduce traffic imposed on the underlay network, and an underlay network uses optimized opportunistic routing to provide efficient and reliable overlay links. We show that inter-flow coding together with opportunistic routing and rate-limiting brings significant performance benefit. Finally, we develop a novel optimization framework in vehicular networks to effectively leverage opportunistic contacts between vehicles and access points (APs). We develop a new mobility prediction algorithm and an optimization algorithm to determine an efficient replication scheme that exploit the synergy among Internet connectivity, local wireless connectivity, mesh network connectivity, and vehicular relay connectivity. Based on our framework, we develop a practical system that enables high-bandwidth content distribution and demonstrate the effectiveness of our approach using simulation, emulation, and testbed experiments. / text
23

Network Coded Media Distribution in Infrastructure Wireless Mesh Networks

Chieochan, Surachai 07 October 2011 (has links)
Infrastructure wireless mesh networks (IWMNs) provide inexpensive deployment, flexible extension of wireless infrastructure, and easy access to the Internet. With multiple radios at each node, a capacity per node improves by transmitting over these radios simultaneously using orthogonal channels. However, without properly addressing the problem of channel assignment and routing for those nodes that form wireless infrastructures, the resulting network throughput and reliability are unlikely to meet the requirements of those highly demanding, media distribution applications. On a particular channel, poor resource allocation at a given access point/gateway of the underlying IWMN can amplify the problem even further. Motivated by these problems, we develop, based on the theory of network coding, a set of alternative solutions that addresses the above issues. We first introduce a sub-optimal solution to the joint problem of network coding, channel assignment and link scheduling for throughput optimization in the multi-channel multi-radio IWMN. We mathematically formulate the problem as a linear program, taking into account opportunistic overhearing, among other constraints. Based on this formulation, we develop a sub-optimal, auction-based algorithm for network throughput optimization. Simulation results reveal the effectiveness of our algorithm in exploiting multiple radios and channels while coping with fairness issues arising from auctions. The proposed solution also shows promising gains over traditional routing solutions. Our experimental results on an 802.11 testbed further confirm these results. The second part of this thesis then presents three AP/gateway-oriented solutions that address the link-level issues related to radio resource allocation at a particular AP/gateway node of the underlying IWMN, which operates on a given channel serving a set of wireless clients. Since the last-hop wireless link is normally a bottleneck of the IWMN, the key idea underlying all the proposed solutions is to use a version of network coding at the bottlenecked AP/gateway. We use Markov chains and the probability theory to derive several performance measures related to media distribution for both uplink and downlink applications. Via extensive simulations, we show the promising delay and reliability gains of the network-coding based schemes over the traditional schemes without network coding.
24

A network traffic model for wireless mesh networks / Z.S. van der Merwe.

Van der Merwe, Zuann Stephanus January 2013 (has links)
Design and management decisions require an accurate prediction of the performance of the network. Network performance estimation techniques require accurate network traffic models. In this thesis we are concerned with the modelling of network traffic for the wireless mesh network (WMN) environment. Queueing theory has been used in the past to model the WMN environment and we found in this study that queueing theory was used in two main methods to model WMNs. The first method is to consider each node in the network in terms of the number of hops it is away from the gateway. Each node is then considered as a queueing station and the parameters for the station is derived from the number of hops each node is away from the gateway. These topologies can be very limiting in terms of the number of physical topologies they can model due to the fact that their parameters are only dependent on the number of hop-counts each node is away from the gateway. The second method is to consider a fixed topology with no gateways. This method simplifies analysis but once again is very limiting. In this dissertation we propose a queueing based network traffic model that uses a connection matrix to define the topology of the network. We then derive the parameters for our model from the connection matrix. The connection matrix allows us to model a wider variety of topologies without modifying our model. We verify our model by comparing results from our model to results from a discrete event simulator and we validate our model by comparing results from our model to results from models previously proposed by other authors. By comparing results from our model to results of other models we show that our model is indeed capable of modelling a wider variety of topologies. / Thesis (MIng (Computer and Electronic Engineering))--North-West University, Potchefstroom Campus, 2013.
25

Enhancing a network coding security scheme to avoid packet dropping in wireless mesh networks / H.L.H.C. Terblanche.

Terblanche, Heila Levina Helena Catharina January 2013 (has links)
With the increase of mobile and smart device usage, the interest in dynamically forming networks is rising. One such type of network isWireless Mesh Networks (WMNs). WMNs are multi-hop networks, with a decentralised nature that can dynamically form into mesh topologies. Network Coding (NC) is a method that is used to increase the efficiency of networks by encoding and decoding data on packet level by means of an XOR operation. NC works well with WMNs because it can exploit WMNs broadcast and opportunistic listening properties. When implementing NC on WMNs the issue of security has to be taken into consideration. Dong et al. identified various security threats for intra-flow NC in WMNs. Intra-flow NC combines packets within individual flows, where the information is divided into different flows called generations, to optimize the decoding process. They identified threats for each component of intra-flow NC for WMNs. These components include forwarding node selection, data packet forwarding and acknowledgement delivery. These threats respectively for each component are wormhole attacks and link quality falsification, packet pollution and packet dropping and acknowledgementdropping, injection and delay. We identified that most security schemes focus on packet pollution attacks in NC, but not on any other threats. Packet dropping is also a major threat in networks that is not addressed. Both packet pollution and packet dropping are threats identified for the data forwarding component of WMNs. The Delayed Authentication with Random Transformations (DART) security scheme addresses packet pollution in intra-flow NC systems. The scheme is based on time asymmetry and checksums. The DART scheme only addresses packet pollution and not any of the other identified threats. The DART scheme was selected to be enhanced to also address packet dropping. To enhance the DART scheme we added additional information to the DART scheme’s checksum packets to detect malicious packet dropping nodes in the network. The information added to the checksum packet took the form of a HealthMatrix, which indicates how many packets a node has received and verified. The new scheme, called the Packet Dropping Detection (PDD) scheme collects the additional information from the checksum packets at the receiver node. The receiver sends the collected information to the source node which then uses the information to identify the malicious nodes in the network. These nodes are then removed from the network. The results show that this new scheme causes a small decrease in throughput – about 2%. The identification of malicious nodes can be used as a diagnostic tool and faulty nodes can be repaired or removed form the network. The advantage to detect malicious packet dropping nodes far outweighs this decrease in throughput. In this dissertation we investigate the effects of packet pollution and packet dropping on NC networks inWMNs. We also enhance an already existing scheme (DART) to add additional packet dropping detection security to it without a great loss in throughput. / Thesis (MIng (Computer and Electronic Engineering))--North-West University, Potchefstroom Campus, 2013.
26

A network traffic model for wireless mesh networks / Z.S. van der Merwe.

Van der Merwe, Zuann Stephanus January 2013 (has links)
Design and management decisions require an accurate prediction of the performance of the network. Network performance estimation techniques require accurate network traffic models. In this thesis we are concerned with the modelling of network traffic for the wireless mesh network (WMN) environment. Queueing theory has been used in the past to model the WMN environment and we found in this study that queueing theory was used in two main methods to model WMNs. The first method is to consider each node in the network in terms of the number of hops it is away from the gateway. Each node is then considered as a queueing station and the parameters for the station is derived from the number of hops each node is away from the gateway. These topologies can be very limiting in terms of the number of physical topologies they can model due to the fact that their parameters are only dependent on the number of hop-counts each node is away from the gateway. The second method is to consider a fixed topology with no gateways. This method simplifies analysis but once again is very limiting. In this dissertation we propose a queueing based network traffic model that uses a connection matrix to define the topology of the network. We then derive the parameters for our model from the connection matrix. The connection matrix allows us to model a wider variety of topologies without modifying our model. We verify our model by comparing results from our model to results from a discrete event simulator and we validate our model by comparing results from our model to results from models previously proposed by other authors. By comparing results from our model to results of other models we show that our model is indeed capable of modelling a wider variety of topologies. / Thesis (MIng (Computer and Electronic Engineering))--North-West University, Potchefstroom Campus, 2013.
27

Enhancing a network coding security scheme to avoid packet dropping in wireless mesh networks / H.L.H.C. Terblanche.

Terblanche, Heila Levina Helena Catharina January 2013 (has links)
With the increase of mobile and smart device usage, the interest in dynamically forming networks is rising. One such type of network isWireless Mesh Networks (WMNs). WMNs are multi-hop networks, with a decentralised nature that can dynamically form into mesh topologies. Network Coding (NC) is a method that is used to increase the efficiency of networks by encoding and decoding data on packet level by means of an XOR operation. NC works well with WMNs because it can exploit WMNs broadcast and opportunistic listening properties. When implementing NC on WMNs the issue of security has to be taken into consideration. Dong et al. identified various security threats for intra-flow NC in WMNs. Intra-flow NC combines packets within individual flows, where the information is divided into different flows called generations, to optimize the decoding process. They identified threats for each component of intra-flow NC for WMNs. These components include forwarding node selection, data packet forwarding and acknowledgement delivery. These threats respectively for each component are wormhole attacks and link quality falsification, packet pollution and packet dropping and acknowledgementdropping, injection and delay. We identified that most security schemes focus on packet pollution attacks in NC, but not on any other threats. Packet dropping is also a major threat in networks that is not addressed. Both packet pollution and packet dropping are threats identified for the data forwarding component of WMNs. The Delayed Authentication with Random Transformations (DART) security scheme addresses packet pollution in intra-flow NC systems. The scheme is based on time asymmetry and checksums. The DART scheme only addresses packet pollution and not any of the other identified threats. The DART scheme was selected to be enhanced to also address packet dropping. To enhance the DART scheme we added additional information to the DART scheme’s checksum packets to detect malicious packet dropping nodes in the network. The information added to the checksum packet took the form of a HealthMatrix, which indicates how many packets a node has received and verified. The new scheme, called the Packet Dropping Detection (PDD) scheme collects the additional information from the checksum packets at the receiver node. The receiver sends the collected information to the source node which then uses the information to identify the malicious nodes in the network. These nodes are then removed from the network. The results show that this new scheme causes a small decrease in throughput – about 2%. The identification of malicious nodes can be used as a diagnostic tool and faulty nodes can be repaired or removed form the network. The advantage to detect malicious packet dropping nodes far outweighs this decrease in throughput. In this dissertation we investigate the effects of packet pollution and packet dropping on NC networks inWMNs. We also enhance an already existing scheme (DART) to add additional packet dropping detection security to it without a great loss in throughput. / Thesis (MIng (Computer and Electronic Engineering))--North-West University, Potchefstroom Campus, 2013.
28

Using topological information in opportunistic network coding / by Magdalena Johanna (Leenta) Grobler

Grobler, Magdalena Johanna January 2008 (has links)
Recent advances in methods to increase network utilization have lead to the introduction of a relatively new method called Network Coding. Network Coding is a method that can reduce local congestion in a network by combining information sent over the network. It is commonly researched in the information theory field after it was first introduced by Ahlswede et al in 2000. Network Coding was proven in 2003, by Koetter & Medard to be the only way to achieve the throughput capacity defined by the Min cut Max flow theorem of Shannon. It was applied deterministically in wired networks and randomly in wireless networks. Random Network Coding however requires a lot of overhead and may cause possible delays in the network. We found that there is an open question as to determine where in a wireless network, Network Coding can be implemented. In this thesis we propose to find opportunities for the implementation of Network Coding, by searching for known deterministic Network Coding topologies in larger Networks. Because a known topology is used, we will then also know how Network Coding should be implemented. This method of finding opportunities for the implementation of Network Coding using topology can be combined with a routing algorithm to improve the utilization of a wireless network. We implemented our method on three different topologies and searched 1000 random networks for the presence of these topologies. We found that these topologies occurred frequently enough to make our method a viable method of finding opportunities for the implementation of Network Coding. / Thesis (M.Ing. (Computer and Electronical Engineering))--North-West University, Potchefstroom Campus, 2009.
29

Network Coded Media Distribution in Infrastructure Wireless Mesh Networks

Chieochan, Surachai 07 October 2011 (has links)
Infrastructure wireless mesh networks (IWMNs) provide inexpensive deployment, flexible extension of wireless infrastructure, and easy access to the Internet. With multiple radios at each node, a capacity per node improves by transmitting over these radios simultaneously using orthogonal channels. However, without properly addressing the problem of channel assignment and routing for those nodes that form wireless infrastructures, the resulting network throughput and reliability are unlikely to meet the requirements of those highly demanding, media distribution applications. On a particular channel, poor resource allocation at a given access point/gateway of the underlying IWMN can amplify the problem even further. Motivated by these problems, we develop, based on the theory of network coding, a set of alternative solutions that addresses the above issues. We first introduce a sub-optimal solution to the joint problem of network coding, channel assignment and link scheduling for throughput optimization in the multi-channel multi-radio IWMN. We mathematically formulate the problem as a linear program, taking into account opportunistic overhearing, among other constraints. Based on this formulation, we develop a sub-optimal, auction-based algorithm for network throughput optimization. Simulation results reveal the effectiveness of our algorithm in exploiting multiple radios and channels while coping with fairness issues arising from auctions. The proposed solution also shows promising gains over traditional routing solutions. Our experimental results on an 802.11 testbed further confirm these results. The second part of this thesis then presents three AP/gateway-oriented solutions that address the link-level issues related to radio resource allocation at a particular AP/gateway node of the underlying IWMN, which operates on a given channel serving a set of wireless clients. Since the last-hop wireless link is normally a bottleneck of the IWMN, the key idea underlying all the proposed solutions is to use a version of network coding at the bottlenecked AP/gateway. We use Markov chains and the probability theory to derive several performance measures related to media distribution for both uplink and downlink applications. Via extensive simulations, we show the promising delay and reliability gains of the network-coding based schemes over the traditional schemes without network coding.
30

Using topological information in opportunistic network coding / by Magdalena Johanna (Leenta) Grobler

Grobler, Magdalena Johanna January 2008 (has links)
Recent advances in methods to increase network utilization have lead to the introduction of a relatively new method called Network Coding. Network Coding is a method that can reduce local congestion in a network by combining information sent over the network. It is commonly researched in the information theory field after it was first introduced by Ahlswede et al in 2000. Network Coding was proven in 2003, by Koetter & Medard to be the only way to achieve the throughput capacity defined by the Min cut Max flow theorem of Shannon. It was applied deterministically in wired networks and randomly in wireless networks. Random Network Coding however requires a lot of overhead and may cause possible delays in the network. We found that there is an open question as to determine where in a wireless network, Network Coding can be implemented. In this thesis we propose to find opportunities for the implementation of Network Coding, by searching for known deterministic Network Coding topologies in larger Networks. Because a known topology is used, we will then also know how Network Coding should be implemented. This method of finding opportunities for the implementation of Network Coding using topology can be combined with a routing algorithm to improve the utilization of a wireless network. We implemented our method on three different topologies and searched 1000 random networks for the presence of these topologies. We found that these topologies occurred frequently enough to make our method a viable method of finding opportunities for the implementation of Network Coding. / Thesis (M.Ing. (Computer and Electronical Engineering))--North-West University, Potchefstroom Campus, 2009.

Page generated in 0.0991 seconds