Spelling suggestions: "subject:" aireless mest networks"" "subject:" fireless mest networks""
41 |
Joint Routing and Resource Management for Multicasting Multiple Description Encoded Traffic in Wireless Mesh NetworksAlganas, Abdulelah January 2018 (has links)
This thesis studies multicasting high bandwidth media traffic in wireless mesh networks (WMNs). Traditional multicast methods use a single multicast tree to reach all destinations, and adapt the multicast rate to the destination with the worst path quality. This approach does not fully utilize the network resources nor distinguish the quality of service (QoS) requirements of different users. It also penalizes the users having better path quality and requiring higher QoS. In multi-hop transmissions, the end-to-end transmission rate is limited by the link with the worst transmission conditions. This makes it difficult to multicast high-bandwidth media traffic with good quality. Using multiple description coding (MDC), the source traffic can be split into multiple sub-streams, referred to as descriptions, each of which requires a much lower bandwidth and can be transmitted along separate paths. In this thesis, we study routing and QoS provisioning jointly for multicasting multiple description (MD) encoded media traffic in WMNs. Routing for the multiple descriptions is jointly studied, while considering the channel quality of different links in the network and QoS at individual destinations. The work in this thesis is divided into two parts.
The first part (Chapters 3 and 4) considers balanced descriptions, each of which contributes equally to the quality of the recovered media at a destination, and we study the problem of power efficient multicasting for the MD-encoded media traffic in WMNs. In Chapter 3, single-hop transmissions are considered. That is, the access points (APs) that store the source traffic communicate with the destination nodes directly. We study two problems jointly, description assignments and power allocations. The former is to assign a description for each AP to transmit, and the latter is to allocate the transmission power for the APs. Different power efficiency objectives are considered, subject to satisfying the QoS requirements of the destination nodes. For each objective, an optimization problem is formulated and heuristic solutions are proposed. Chapter 4 extends the work to multi-hop transmissions, where relay stations (RSs) are available to forward the traffic from the APs to the destinations. We consider two different routing structures based on whether an RS is allowed to forward more than one description. The objective is to minimize the total transmission power of the APs and the RSs in the network, subject to the QoS requirements of the destinations. An optimum problem is formulated and then translated to an integer and linear programming problem, and a centralized scheme with much lower complexity is proposed. Following that, a distributed scheme, referred to as minimum weight k-path scheme, is proposed, which builds one multicast tree for each description. By permitting only neighboring nodes to exchange related information, the scheme allows each node to find its best parent node based on the additional transmission power needed to establish the link.
The second part (Chapter 5) of the thesis considers unbalanced descriptions. Routing for the multiple descriptions is jointly considered with application layer performance, so that the maximum distortion of recovered media at the destinations is minimized. An optimization problem is first formulated, and a centralized scheme with lower complexity is proposed. The centralized scheme first finds a set of candidate paths for each destination based on a predefined set of criteria, then it iteratively expands the multicast trees by only merging the paths that minimize the maximum distortion for all destinations. A distributed scheme is also proposed by modifying the minimum weight k-path scheme. In the modified scheme, each RS makes a local decision to join different multicast trees based on the expected distortion among its connected downstream nodes. The proposed multicasting schemes require much lower implementation complexity, compared to the optimum solutions. The centralized scheme is more suitable for small size networks, and achieves close-to-optimum performance for a wide range of parameter settings. The distributed scheme only requires neighboring nodes to exchange information, and can be implemented to networks with a relatively large number of APs, RSs, and destination nodes. / Thesis / Doctor of Philosophy (PhD)
|
42 |
Achieving Fairness in 802.11-Based Multi-channel Wireless Mesh NetworksLee, Ann January 2006 (has links)
Multi-hop wireless networks based on 802. 11 are being used more widely as an alternative technology for last-mile broadband Internet access. Their benefits include ease of deployment and lower cost. Such networks are not without problems. Current research on such networks aims at a number of challenges, including overcoming capacity limitation and poor fairness. <br /><br /> The focus of our research is for achieving fairness in multi-channel multi-hop wireless networks. First, we review the literature for different methods for representing link-contention areas, and the existing single-channel fairness computational model. Second, we generalize the fairness constraints applied to each link-contention area, defined in the existing single-channel fairness reference model, to multi-channel models. Third, by adopting the concepts of link-usage matrix and medium-usage matrix to represent network topology and flow status, and using Collision Domain theory and Clique Graph theory to represent link-contention area, we develop a computational model to compute optimal MAC-layer bandwidth allocated to each flow in a multi-channel multi-hop WMN. We simulate various network configurations to evaluate the performance of the fairness algorithm based on the above computational model in different scenarios. We have found that in the multi-channel environment, our extension to the Collision Domain model generally provides a more accurate estimation of network capacity. Based on this model, we have extended the source-rate-limiting mechanism, which limits the flow rate to its fair share computed by the computational model. Experimental results that validate these findings are presented in this thesis.
|
43 |
Channel assignment and routing in cooperative and competitive wireless mesh networksShah, Ibrar Ali January 2012 (has links)
In this thesis, the channel assignment and routing problems have been investigated for both cooperative and competitive Wireless Mesh networks (WMNs). A dynamic and distributed channel assignment scheme has been proposed which generates the network topologies ensuring less interference and better connectivity. The proposed channel assignment scheme is capable of detecting the node failures and mobility in an efficient manner. The channel monitoring module precisely records the quality of bi-directional links in terms of link delays. In addition, a Quality of Service based Multi-Radio Ad-hoc On Demand Distance Vector (QMR-AODV) routing protocol has been devised. QMR-AODV is multi-radio compatible and provides delay guarantees on end-to-end paths. The inherited problem of AODV’s network wide flooding has been solved by selectively forwarding the routing queries on specified interfaces. The QoS based delay routing metric, combined with the selective route request forwarding, reduces the routing overhead from 24% up to 36% and produces 40.4% to 55.89% less network delays for traffic profiles of 10 to 60 flows, respectively. A distributed channel assignment scheme has been proposed for competitive WMNs, where the problem has been investigated by applying the concepts from non-cooperative bargaining Game Theory in two stages. In the first stage of the game, individual nodes of the non-cooperative setup is considered as the unit of analysis, where sufficient and necessary conditions for the existence of Nash Equilibrium (NE) and Negotiation-Proof Nash Equilibrium (N-PNE) have been derived. A distributed algorithm has been presented with perfect information available to the nodes of the network. In the presence of perfect information, each node has the knowledge of interference experience by the channels in its collision domain. The game converges to N-PNE in finite time and the average fairness achieved by all the nodes is greater than 0.79 (79%) as measured through Jain Fairness Index. Since N-PNE and NE are not always a system optimal solutions when considered from the end-nodes prospective, the model is further extended to incorporate non-cooperative end-users bargaining between two end user’s Mesh Access Points (MAPs), where an increase of 10% to 27% in end-to-end throughput is achieved. Furthermore, a non-cooperative game theoretical model is proposed for end-users flow routing in a multi-radio multi-channel WMNs. The end user nodes are selfish and compete for the channel resources across the WMNs backbone, aiming to maximize their own benefit without taking care for the overall system optimization. The end-to-end throughputs achieved by the flows of an end node and interference experienced across the WMNs backbone are considered as the performance parameters in the utility function. Theoretical foundation has been drawn based on the concepts from the Game Theory and necessary conditions for the existence of NE have been extensively derived. A distributed algorithm running on each end node with imperfect information has been implemented to assess the usefulness of the proposed mechanism. The analytical results have proven that a pure strategy Nash Equilibrium exists with the proposed necessary conditions in a game of imperfect information. Based on a distributed algorithm, the game converges to a stable state in finite time. The proposed game theoretical model provides a more reasonable solution with a standard deviation of 2.19Mbps as compared to 3.74Mbps of the random flow routing. Finally, the Price of Anarchy (PoA) of the system is close to one which shows the efficiency of the proposed scheme.
|
44 |
Improving broadcast performance in multi-radio multi-channel multi-rate wireless mesh networks.Qadir, Junaid, Computer Science & Engineering, Faculty of Engineering, UNSW January 2008 (has links)
This thesis addresses the problem of `efficient' broadcast in a multi-radio multi-channel multi-rate wireless mesh network (MR$^2$-MC WMN). In such a MR$^2$-MC WMN, nodes are equipped with multiple radio network interface cards, each tuned to an orthogonal channel, that can dynamically adjust transmission rate by choosing a modulation scheme appropriate for the channel conditions. We choose `broadcast latency', defined as the maximum delay between a packet's network-wide broadcast at the source and its eventual reception at all network nodes, as the `efficiency' metric of broadcast performance. The problem of constructing a broadcast forwarding structure having minimal broadcast latency is referred to as the `minimum-latency-broadcasting' (MLB) problem. While previous research for broadcast in single-radio single-rate wireless networks has highlighted the wireless medium's `\emph{wireless broadcast advantage}' (WBA); little is known regarding how the new features of MR$^2$-MC WMN may be exploited. We study in this thesis how the availability of multiple radio interfaces (tuned to orthogonal channels) at WMN nodes, and WMN's multi-rate transmission capability and WBA, might be exploited to improve the `broadcast latency' performance. We show the MLB problem for MR$^2$-MC WMN to be NP-hard, and resort to heuristics for its solution. We divide the overall problem into two sub-problems, which we address in two separate parts of this thesis. \emph{In the first part of this thesis}, the MLB problem is defined for the case of single-radio single-channel multi-rate WMNs where WMN nodes are equipped with a single radio tuned to a common channel. \emph{In the second part of this thesis}, the MLB problem is defined for MR$^2$-MC WMNs where WMN nodes are equipped with multiple radios tuned to multiple orthogonal channels. We demonstrate that broadcasting in multi-rate WMNs is significantly different to broadcasting in single-rate WMNs, and that broadcast performance in multi-rate WMNs can be significantly improved by exploiting the availability of multi-rate feature and multiple interfaces. We also present two alternative MLB broadcast frameworks and specific algorithms, centralized and distributed, for each framework that can exploit multiple interfaces at a WMN node, and the multi-rate feature and WBA of MR$^2$-MC WMN to return improved `broadcast latency' performance.
|
45 |
QoS Routing in Wireless Mesh NetworksAbdelkader, Tamer Ahmed Mostafa Mohammed January 2008 (has links)
Wireless Mesh Networking is envisioned as an economically viable paradigm and a promising technology in providing wireless broadband services. The wireless mesh backbone consists of fixed mesh routers that interconnect different mesh clients to themselves and to the wireline backbone network. In order to approach the wireline servicing level and provide same or near QoS guarantees to different traffic flows, the wireless mesh backbone should be quality-of-service (QoS) aware. A key factor in designing protocols for a wireless mesh network (WMN) is to exploit its distinct characteristics, mainly immobility of mesh routers and less-constrained power consumption.
In this work, we study the effect of varying the transmission power to achieve the required signal-to-interference noise ratio for each link and, at the same time, to maximize the number of simultaneously active links. We propose a QoS-aware routing framework by using transmission power control. The framework addresses both the link scheduling and QoS routing problems with a cross-layer design taking into consideration the spatial reuse of the network bandwidth. We formulate an optimization problem to find the optimal link schedule and use it as a fitness function in a genetic algorithm to find candidate routes. Using computer simulations, we show that by optimal power allocation the QoS constraints for the different traffic flows are met with more efficient bandwidth utilization than the minimum power allocations.
|
46 |
Radio Resource Management for Wireless Mesh Networks Supporting Heterogeneous TrafficCheng, Ho Ting January 2009 (has links)
Wireless mesh networking has emerged as a promising technology for future broadband wireless access, providing a viable and economical solution for both peer-to-peer applications and Internet access. The success of wireless mesh networks (WMNs) is highly contingent on effective radio resource management. In conventional wireless networks, system throughput is usually a common performance metric. However, next-generation broadband wireless access networks including WMNs are anticipated to support multimedia traffic (e.g., voice, video, and data traffic). With heterogeneous traffic, quality-of-service (QoS) provisioning and fairness support are also imperative. Recently, wireless mesh networking for suburban/rural residential areas has been attracting a plethora of attentions from industry and academia. With austere suburban and rural networking environments, multi-hop communications with decentralized resource allocation are preferred. In WMNs without powerful centralized control, simple yet effective resource allocation approaches are desired for the sake of system performance melioration. In this dissertation, we conduct a comprehensive research study on the topic of radio resource management for WMNs supporting multimedia traffic. In specific, this dissertation is intended to shed light on how to effectively and efficiently manage a WMN for suburban/rural residential areas, provide users with high-speed wireless access, support the QoS of multimedia applications, and improve spectrum utilization by means of novel radio resource allocation. As such, five important resource allocation problems for WMNs are addressed, and our research accomplishments are briefly outlined as follows:
Firstly, we propose a novel node clustering algorithm with effective subcarrier allocation for WMNs. The proposed node clustering algorithm is QoS-aware, and the subcarrier allocation is optimality-driven and can be performed in a decentralized manner. Simulation results show that, compared to a conventional conflict-graph approach, our proposed approach effectively fosters frequency reuse, thereby improving system performance;
Secondly, we propose three approaches for joint power-frequency-time resource allocation. Simulation results show that all of the proposed approaches are effective in provisioning packet-level QoS over their conventional resource allocation counterparts. Our proposed approaches are of low complexity, leading to preferred candidates for practical implementation;
Thirdly, to further enhance system performance, we propose two low-complexity node cooperative resource allocation approaches for WMNs with partner selection/allocation. Simulation results show that, with beneficial node cooperation, both proposed approaches are promising in supporting QoS and elevating system throughput over their non-cooperative counterparts;
Fourthly, to further utilize the temporarily available radio spectrum, we propose a simple channel sensing order for unlicensed secondary users. By sensing the channels according to the descending order of their achievable rates, we prove that a secondary user should stop at the first sensed free channel for the sake of optimality; and
Lastly, we derive a unified optimization framework to effectively attain different degrees of performance tradeoff between throughput and fairness with QoS support. By introducing a bargaining floor, the optimal tradeoff curve between system throughput and fairness can be obtained by solving the proposed optimization problem iteratively.
|
47 |
Centralized Rate Allocation and Control in 802.11-based Wireless Mesh NetworksJamshaid, Kamran January 2010 (has links)
Wireless Mesh Networks (WMNs) built with commodity 802.11 radios are a cost-effective means of providing last mile broadband Internet access. Their multihop architecture allows for rapid deployment and organic growth of these networks.
802.11 radios are an important building block in WMNs. These low cost radios are readily available, and can be used globally in license-exempt frequency bands. However, the 802.11 Distributed Coordination Function (DCF) medium access mechanism does not scale well in large multihop networks. This produces suboptimal behavior in many transport protocols, including TCP, the dominant transport protocol in the Internet. In particular, cross-layer interaction between DCF and TCP results in flow level unfairness, including starvation, with backlogged traffic sources. Solutions found in the literature propose distributed source rate control algorithms to alleviate this problem. However, this requires MAC-layer or transport-layer changes on all mesh routers. This is often infeasible in practical deployments.
In wireline networks, router-assisted rate control techniques have been proposed for use alongside end-to-end mechanisms. We evaluate the feasibility of establishing similar centralized control via gateway mesh routers in WMNs. We find that commonly used router-assisted flow control schemes designed for wired networks fail in WMNs. This is because they assume that: (1) links can be scheduled independently, and (2) router queue buildups are sufficient for detecting congestion. These abstractions do not hold in a wireless network, rendering wired scheduling algorithms such as Fair Queueing (and its variants) and Active Queue Management (AQM) techniques ineffective as a gateway-enforceable solution in a WMN. We show that only non-work-conserving rate-based scheduling can effectively enforce rate allocation via a single centralized traffic-aggregation point.
In this context we propose, design, and evaluate a framework of centralized, measurement-based, feedback-driven mechanisms that can enforce a rate allocation policy objective for adaptive traffic streams in a WMN. In this dissertation we focus on fair rate allocation requirements. Our approach does not require any changes to individual mesh routers. Further, it uses existing data traffic as capacity probes, thus incurring a zero control traffic overhead. We propose two mechanisms based on this approach: aggregate rate control (ARC) and per-flow rate control (PFRC). ARC limits the aggregate capacity of a network to the sum of fair rates for a given set of flows. We show that the resulting rate allocation achieved by DCF is approximately max-min fair. PFRC allows us to exercise finer-grained control over the rate allocation process. We show how it can be used to achieve weighted flow rate fairness. We evaluate the performance of these mechanisms using simulations as well as implementation on a multihop wireless testbed. Our comparative analysis show that our mechanisms improve fairness indices by a factor of 2 to 3 when compared with networks without any rate limiting, and are approximately equivalent to results achieved with distributed source rate limiting mechanisms that require software modifications on all mesh routers.
|
48 |
Achieving Fairness in 802.11-Based Multi-channel Wireless Mesh NetworksLee, Ann January 2006 (has links)
Multi-hop wireless networks based on 802. 11 are being used more widely as an alternative technology for last-mile broadband Internet access. Their benefits include ease of deployment and lower cost. Such networks are not without problems. Current research on such networks aims at a number of challenges, including overcoming capacity limitation and poor fairness. <br /><br /> The focus of our research is for achieving fairness in multi-channel multi-hop wireless networks. First, we review the literature for different methods for representing link-contention areas, and the existing single-channel fairness computational model. Second, we generalize the fairness constraints applied to each link-contention area, defined in the existing single-channel fairness reference model, to multi-channel models. Third, by adopting the concepts of link-usage matrix and medium-usage matrix to represent network topology and flow status, and using Collision Domain theory and Clique Graph theory to represent link-contention area, we develop a computational model to compute optimal MAC-layer bandwidth allocated to each flow in a multi-channel multi-hop WMN. We simulate various network configurations to evaluate the performance of the fairness algorithm based on the above computational model in different scenarios. We have found that in the multi-channel environment, our extension to the Collision Domain model generally provides a more accurate estimation of network capacity. Based on this model, we have extended the source-rate-limiting mechanism, which limits the flow rate to its fair share computed by the computational model. Experimental results that validate these findings are presented in this thesis.
|
49 |
QoS Routing in Wireless Mesh NetworksAbdelkader, Tamer Ahmed Mostafa Mohammed January 2008 (has links)
Wireless Mesh Networking is envisioned as an economically viable paradigm and a promising technology in providing wireless broadband services. The wireless mesh backbone consists of fixed mesh routers that interconnect different mesh clients to themselves and to the wireline backbone network. In order to approach the wireline servicing level and provide same or near QoS guarantees to different traffic flows, the wireless mesh backbone should be quality-of-service (QoS) aware. A key factor in designing protocols for a wireless mesh network (WMN) is to exploit its distinct characteristics, mainly immobility of mesh routers and less-constrained power consumption.
In this work, we study the effect of varying the transmission power to achieve the required signal-to-interference noise ratio for each link and, at the same time, to maximize the number of simultaneously active links. We propose a QoS-aware routing framework by using transmission power control. The framework addresses both the link scheduling and QoS routing problems with a cross-layer design taking into consideration the spatial reuse of the network bandwidth. We formulate an optimization problem to find the optimal link schedule and use it as a fitness function in a genetic algorithm to find candidate routes. Using computer simulations, we show that by optimal power allocation the QoS constraints for the different traffic flows are met with more efficient bandwidth utilization than the minimum power allocations.
|
50 |
Radio Resource Management for Wireless Mesh Networks Supporting Heterogeneous TrafficCheng, Ho Ting January 2009 (has links)
Wireless mesh networking has emerged as a promising technology for future broadband wireless access, providing a viable and economical solution for both peer-to-peer applications and Internet access. The success of wireless mesh networks (WMNs) is highly contingent on effective radio resource management. In conventional wireless networks, system throughput is usually a common performance metric. However, next-generation broadband wireless access networks including WMNs are anticipated to support multimedia traffic (e.g., voice, video, and data traffic). With heterogeneous traffic, quality-of-service (QoS) provisioning and fairness support are also imperative. Recently, wireless mesh networking for suburban/rural residential areas has been attracting a plethora of attentions from industry and academia. With austere suburban and rural networking environments, multi-hop communications with decentralized resource allocation are preferred. In WMNs without powerful centralized control, simple yet effective resource allocation approaches are desired for the sake of system performance melioration. In this dissertation, we conduct a comprehensive research study on the topic of radio resource management for WMNs supporting multimedia traffic. In specific, this dissertation is intended to shed light on how to effectively and efficiently manage a WMN for suburban/rural residential areas, provide users with high-speed wireless access, support the QoS of multimedia applications, and improve spectrum utilization by means of novel radio resource allocation. As such, five important resource allocation problems for WMNs are addressed, and our research accomplishments are briefly outlined as follows:
Firstly, we propose a novel node clustering algorithm with effective subcarrier allocation for WMNs. The proposed node clustering algorithm is QoS-aware, and the subcarrier allocation is optimality-driven and can be performed in a decentralized manner. Simulation results show that, compared to a conventional conflict-graph approach, our proposed approach effectively fosters frequency reuse, thereby improving system performance;
Secondly, we propose three approaches for joint power-frequency-time resource allocation. Simulation results show that all of the proposed approaches are effective in provisioning packet-level QoS over their conventional resource allocation counterparts. Our proposed approaches are of low complexity, leading to preferred candidates for practical implementation;
Thirdly, to further enhance system performance, we propose two low-complexity node cooperative resource allocation approaches for WMNs with partner selection/allocation. Simulation results show that, with beneficial node cooperation, both proposed approaches are promising in supporting QoS and elevating system throughput over their non-cooperative counterparts;
Fourthly, to further utilize the temporarily available radio spectrum, we propose a simple channel sensing order for unlicensed secondary users. By sensing the channels according to the descending order of their achievable rates, we prove that a secondary user should stop at the first sensed free channel for the sake of optimality; and
Lastly, we derive a unified optimization framework to effectively attain different degrees of performance tradeoff between throughput and fairness with QoS support. By introducing a bargaining floor, the optimal tradeoff curve between system throughput and fairness can be obtained by solving the proposed optimization problem iteratively.
|
Page generated in 0.0723 seconds