• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 698
  • 367
  • 265
  • 70
  • 62
  • 22
  • 22
  • 22
  • 22
  • 22
  • 22
  • 18
  • 10
  • 10
  • 8
  • Tagged with
  • 1802
  • 376
  • 341
  • 165
  • 156
  • 146
  • 143
  • 110
  • 104
  • 99
  • 96
  • 86
  • 83
  • 82
  • 78
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
261

The effect of type and concentration of surfactant on stability and rheological properties of explosive emulsions /

Tshilumbu, Nsenda Ngenda. January 2009 (has links)
Thesis (MTech (Chemical Engineering))--Cape Peninsula University of Technology, 2009. / Includes bibliographical references (leaves 179-194). Also available online.
262

Examination of particle/particle interactions and their impact on rheology and mixedness of an alumina/titania system

August, Cari R., January 2009 (has links)
Thesis (Ph. D.)--Rutgers University, 2009. / "Graduate Program in Materials Science and Engineering." Includes bibliographical references (p. 244-249).
263

Interactions, phase behavior and rheological properties of polymer-nanoparticle mixtures

Surve, Megha Madhukar 28 August 2008 (has links)
Not available
264

Application of pore fluid engineering for improving the hydraulic performance of granular soils

Yoon, Jisuk 30 January 2012 (has links)
Over the past years, levee failures during floods have caused significant losses of lives and properties in the nation. Majority of these failures were induced by seepage through granular foundation soils underneath the top soil on which the levees were built. One of methods to mitigate this phenomenon includes the treatment of the granular soil deposits with an engineered fluid delivered by permeation (permeation grouting), resulting in a less pervious deposit. Since the conventional cement-based suspensions and chemical solutions may cause groundwater contamination due to long term reaction with groundwater, clay suspension such as bentonite suspension can be an alternative in terms of environmental friendliness and long-term safety. Moreover, the suspensions, after being permeated, are expected to be stable in the pore space due to the thixotropic nature of bentonite. The main challenge in this approach is being able to permeate a concentrated suspension through the pores of a granular material. To achieve a significant reduction in the hydraulic conductivity, concentrated bentonite suspensions should be used; however, concentrated suspensions can have low mobility, resulting in a low penetration depth and little practical application. The main objective of this study is to investigate the permeation of concentrated bentonite suspensions by controlling their rheological properties. The first portion of this research focuses on measuring the rheological properties of the various engineered bentonite suspensions over time. The second point of focus of this research is the parameters affecting the flow of the bentonite suspensions through granular soils, and the final focal area is determining the hydraulic performance of the grouted granular soils. In order to achieve these objectives, an experimental program was developed in this research. First, rheological tests were performed with the bentonite suspensions with and without various concentrations of sodium pyrophosphate (SPP); SPP is an ionic additive that is used to reduce the initial yield stress and viscosity of bentonite suspensions. A stress controlled test with the vane geometry produced rheological parameters with a minimal disturbance. Suspensions were stored in sealed cups and tested at various times to measure the long term thixotropic changes in yield stress and viscosity. Second, the various concentrations of the bentonite suspensions were injected at a constant pressure through clean sands which were prepared at various conditions (relative density, fine contents, and grain size) in order to investigate soil and suspension parameters affecting the flow of the bentonite suspensions. The results from these experimental tests were utilized to develop a groutability criterion of bentonite suspensions for practical purposes. Finally, the saturated hydraulic conductivity of the treated soils was measured using falling and rising head method. The traditional concept of “clay void ratio” was re-examined. The results from this study showed that the modified bentonite suspensions could be used as an alternative grout in permeation grouting to improve hydraulic performance of the permeable granular soils. / text
265

Extrusion foaming of bioplastics for lightweight structure in food packaging

Duangphet, Sitthi January 2012 (has links)
This thesis reports the systematic approaches to overcome the key drawbacks of the pure PHBV, namely low crystallisation rate, tensile strength, ductility, melt viscosity, thermal stability and high materials cost. The physical, mechanical, thermal, and rheological properties of the pure PHBV were studied systematically first to lay a solid foundation for formulation development. The influence of blending with other biopolymers, inclusion of filler, and chain extender additives in terms of mechanical properties, rheology, thermal decomposition and crystallization kinetics were then followed. Creating lightweight structures by foaming is considered to be one of the effective ways to reduce material consumption, hence the reduction of density and morphology of PHBV-based foams using extrusion foaming technique were studied comprehensively in terms of extrusion conditions (temperature profiles, screw speed and material feeding rate) and the blowing agent content. The material cost reduction was achieved by adding low-cost filler (e.g. CaCO3) and reduction of density by foaming. The thermal instability was enhanced by incorporation of chain extender (e.g. Joncryl) and blending with a high thermal stability biopolymer (e.g. PBAT). The polymer blend also improved the ductility. Adding nucleation agent enhanced the crystallization rate to reduce stickiness of extruded sheet. The final formulation (PHBV/PBAT/CaCO3 composite) was successfully extruded into high quality sheet and thermoformed to produce prototype trays in an industrial scale trial. The effect of the extrusion conditions (temperature profiles, screw speed and material feeding rate) and the blowing agent content are correlated to the density reduction of the foams. 61 and 47 % density reduction were achieved for the commercial PHBV and the PHBV/PBAT/CaCO3 composite respectively and there exists further scope for more expansion if multiple variable optimisation of the conditions are carried out.
266

An improved in-line process rheometer for use as a process control sensor /

Nelson, Burke I. January 1988 (has links)
No description available.
267

Pipe flow of homogeneous slurry

Hallbom, Donald John 11 1900 (has links)
The objective of this Thesis is to devise a system for the "rheology-based design" of non-settling (homogeneous) slurry pipelines that is more conducive to application by practicing engineers without impairing its accuracy or utility for research purposes. The cornerstone is the development of a new rheological model and constitutive equation for homogeneous slurry based on the aggregation/deaggregation of the suspended mineral particles. This “yield plastic” model is shown to describe a family of models that includes the Newtonian, Bingham plastic and Casson models as special cases. It also closely approximates the results of many consistency models, including power law, yield power law, Cross and Carreau-Yasuda. The yield plastic model is then used to develop design equations to determine the pressure-gradient of laminar and turbulent pipe flow. A relative energy dissipation criterion is proposed for the laminar-turbulent transition and shown to be consistent with currently used transition models for Newtonian and Bingham fluids. Finally, a new dimensionless group (the “stress number”) is proposed that is directly proportional to the pressure-gradient and independent of the velocity. When the design equations are presented graphically in terms of the stress number and the plastic Reynolds number, the resulting “design curve diagram” is shown to be a dimensionless (pressure-gradient vs. velocity) pipe flow curve. The net result is that the hydraulic design of homogeneous slurry systems only requires the use of a single constitutive equation and three engineering design equations. The results are presented in a conceptually easy form that will foster an intuitive understanding of non-Newtonian pipe flow. This will assist engineers to understand the impact of slurry rheology when designing, operating and troubleshooting slurry pipelines and, in the future, other slurry related processes.
268

Rheology and electro-acoustic characterization of laterite slurries

Colebrook, Marjorie Helen 05 1900 (has links)
A systematic research study was carried out in order to characterize the rheology of concentrated slurries prepared from eight nickel laterites. The experiments were carried out using a rotational viscometer, and the behavior of the laterites was evaluated in terms of the apparent viscosity and yield stress obtained through flow curve modeling. An attempt was made to correlate the results obtained for the laterite samples with data obtained for model single mineral systems as well as for model mixed mineral systems. In combination with detailed mineralogical characterization of the laterite samples, all the rheological results allowed a rheology-based laterite classification system to be proposed. Accordingly, the laterite samples gave the following responses: the SAPSIL samples (high-quartz) generally producedl ow yield stress values, the SAPFE samples (high-iron) were characterized by intermediate to high yield stress values, while the SAP samples (saprolite) gave the highest yield stress values. Interestingly, these dominant rheological responses of laterites could actually be predicted based on rheological tests carried out on model mineral suspensions (particularly goethite and quartz). Since the rheology of fine mineral suspensions is largely determined by the surface properties (surface charge) of the particles, a series of electro-acoustic measurements were also performed on model minerals and laterite samples to analyze the surface charge characteristics of the tested samples. It was demonstrated that the current electro-acoustic theory developed for single mineral systems can readily be used for modeling the behavior of mixed mineral systems. The modeling and experimental data agreed exceptionally well when constituent minerals were of the same surface charge under given pH. Clear but rather small deviations between experiment and theory were observed under conditions when the minerals were oppositely charged. This observation strongly suggested that inter-particle aggregation was most likely responsible for the observed discrepancies. Overall, the results of this thesis show that laterite slurries exhibit a wide range of rheological responses due to highly variable mineralogy, differences in particle size distributions, and difference in the surface properties of the many constituent minerals. It also shows that the surface properties of the minerals relates to rheology.
269

Protein isolation from mechanically separated turkey meat (MSTM)

Hrynets, Yuliya Unknown Date
No description available.
270

N-glycosylation and gelling properties of ovomucin from egg white

Offengenden, Marina Unknown Date
No description available.

Page generated in 0.0315 seconds