• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 11
  • 3
  • 2
  • 1
  • 1
  • Tagged with
  • 25
  • 25
  • 8
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

3D seismic geomorphology and stratigraphy of the late Miocene to Pliocene Mississippi River Delta : fluvial systems and dynamics

Armstrong, Christopher Paul 20 July 2012 (has links)
This study uses a 1375 km2 3D seismic dataset located in the late Miocene to Pliocene Mississippi River Delta in order to investigate the external characteristics, lithology, and evolution of channelized deposits within the seismic survey. Fluvial thicknesses range from about 11 m to 90 m and widths range from about 100 m to 31 km. Channel fill can be generalized as sandy with low impedance and high porosity (~ 35%), though heterogeneity can be high. Three distinct fluvial styles were recognized: incised valleys, channel-belts, and distributive channel networks. Fluvial styles were interpreted as a result of changes in sea-level and a speculative late Miocene to Pliocene Mississippi River Delta sea-level curve constructed using these relationships. Additionally, a characteristic interval between the major changes in fluvial style was found. These fluvial systems interact with and are affected by other elements in the landscape. Growth faults in particular are common within the survey area; however, the dynamic between fluvial systems and growth fault related subsidence has been poorly understood and so was also a focus of this project. Previous work as well as this study found little evidence that growth faults are able to affect the course or geometry of the majority of small (with most < 500 m in width and < 20 m in depth) channels. However, the relationship between growth faults and larger scale channel-belt systems (between 1 km and 5 km in width and > 25 m in depth) has not been previously evaluated in this area. In contrast to the majority of small distributary channels found within the survey, channel-belts appear to be steered by growth faults. Fluvial response or insensitivity to fault induced subsidence is related to the relative timescales of avulsion and faulting. Channel-belts are longer lived features than more ephemeral small distributary channels. Channel-belts, due to their relatively low mobility compared to small channels, are more likely to experience punctuated faulting events which results in greater apparent sensitivity to faulting than seen in small channels. / text
2

Quantifying the Permeability Heterogeneity of Sandstone Reservoirs in Boonsville Field, Texas by Integrating Core, Well Log and 3D Seismic Data

Song, Qian 03 October 2013 (has links)
Increasing hydrocarbon reserves by finding new resources in frontier areas and improving recovery in the mature fields, to meet the high energy demands, is very challenging for the oil industry. Reservoir characterization and heterogeneity studies play an important role in better understanding reservoir performance to meet this industry goal. This study was conducted on the Boonsville Bend Conglomerate reservoir system located in the Fort Worth Basin in central-north Texas. The primary reservoir is characterized as highly heterogeneous conglomeratic sandstone. To find more potential and optimize the field exploitation, it’s critical to better understand the reservoir connectivity and heterogeneity. The goal of this multidisciplinary study was to quantify the permeability heterogeneity of the target reservoir by integrating core, well log and 3D seismic data. A set of permeability coefficients, variation coefficient, dart coefficient, and contrast coefficient, was defined in this study to quantitatively identify the reservoir heterogeneity levels, which can be used to characterize the intra-bed and inter-bed heterogeneity. Post-stack seismic inversion was conducted to produce the key attribute, acoustic impedance, for the calibration of log properties with seismic. The inverted acoustic impedance was then used to derive the porosity volume in Emerge (the module from Hampson Russell) by means of single and multiple attributes transforms and neural network. Establishment of the correlation between permeability and porosity is critical for the permeability conversion, which was achieved by using the porosity and permeability pairs measured from four cores. Permeability volume was then converted by applying this correlation. Finally, the three heterogeneity coefficients were applied to the permeability volume to quantitatively identify the target reservoir heterogeneity. It proves that the target interval is highly heterogeneous both vertically and laterally. The heterogeneity distribution was obtained, which can help optimize the field exploitation or infill drilling designs.
3

Along Strike Variability of Thrust-Fault Vergence

Greenhalgh, Scott Royal 11 June 2014 (has links) (PDF)
The kinematic evolution and along-strike variation in contractional deformation in overthrust belts are poorly understood, especially in three dimensions. The Sevier-age Cordilleran overthrust belt of southwestern Wyoming, with its abundance of subsurface data, provides an ideal laboratory to study how this deformation varies along the strike of the belt. We have performed a detailed structural interpretation of dual vergent thrusts based on a 3D seismic survey along the Wyoming salient of the Cordilleran overthrust belt (Big Piney-LaBarge field). The complex evolution of the thrust faults that parallel the overthrust belt is demonstrated by the switching of the direction of thrust fault vergence nearly 180° from east to west. The variation in thrust-fault geometry suggests additional complexities in bulk translation, internal strains, and rotations. The thrust zone is composed of two sub-zones, each with an opposing direction of fault vergence, located on the eastern toe of the Hogsback thrust in southwestern Wyoming. The northern west-vergent thrust is a wedge thrust and forms a triangle zone between its upper thrust plane and the lower detachment that has formed in a weak shale layer (the Cretaceous K-Marker bed). Thrusts to the south have a frontal ramp geometry and are consistent with the overall thrust orientation of the Cordilleran overthrust belt located immediately to the west. The two thrust sub-zones are small, relative to the main Hogsback thrust to the west, and adjacent to each other, being separated by a transfer zone measuring in the hundreds of meters along strike. The transfer zone is relatively undisturbed by the faults (at the scale of seismic resolution), but reflections are less coherent with some very small offsets. The thrusts are thin-skinned and located above a shallow-dipping single detachment (or décollement) that is shared by faults in both sub-zones. Lateral growth of the thrust faults link along strike to form an antithetic fault linkage. Structural restoration of thrust faults shows varied amounts of shortening along strike as well as greater shortening in stratigraphic layers of the west-vergent fault to the north. Results from a waveform classification and spectral decomposition attribute analysis support our interpretations of how the variations in the detachment may govern the structural development above it. The kinematic evolution of the dual-verging thrust faults is likely controlled by local pinning within the transfer zone between the thrust-fault sub-zones as well as by changes in the competence of the strata hosting the detachment and in the thickness of the thrust sheet. The analysis and interpretation of dual-vergent thrust structures in the Cordilleran overthrust belt serve as an analog to better understand complex fold, fault, and detachment relations in other thrust belts.
4

Applications of 3D seismic attribute analysis workflows: a case study from Ness County, Kansas, USA

Meek, Tyler N. January 1900 (has links)
Master of Science / Department of Geology / Matthew Totten / Due to their high resolution and established success rates, 3D seismic surveys have become one of the most important tools in many hydrocarbon exploration programs. Basic interpretation of seismic reflectors alone, however, may result in inaccurate predictions of subsurface geology. Historically, seismic attributes have played a particularly important role in the characterization of the lithological and petrophysical properties of hydrocarbon reservoirs in Kansas channel fill lithofacies. Integration of an analysis based on post-stack seismic attributes may drastically reduce the chances of drilling in unsuitable locations. Previous theses have focused on establishing a suitable 3D seismic attribute analysis workflow for use in the determination of hydrocarbon production potential in areas of Ness County, Kansas, USA (Abbas, 2009; Phillip, 2011). By applying a similar workflow in the analysis of additional 3D seismic and well log data obtained from a nearby area in Ness County, and comparing those results to existing borehole and production data, this study seeks to test the hypothesis that seismic attribute analysis is a crucial component in the delineation of heterogeneous reservoir stratigraphy in Kansas lithologies. Time-structure maps, in addition to time slices of several 3D seismic attributes including amplitude attenuation, acoustic impedance, and event continuity all seem to indicate that five previously drilled dry wells within the study area were outside the boundary of a meandering, Cherokee sandstone body of potential reservoir quality. Additionally, comparisons of the results of this research to previous studies conducted in Ness County have provided an opportunity to assess, and potentially contribute to, paleodepositional interpretations made through the utilization of a similar workflow (Raef et al., in press). The results of this study seem to support a broadly NE-SW trending meandering channel system, which is in agreement with the interpretations of Raef et al., and the findings of Ramaker (2009).
5

2D and 3D Seismic Surveying at the CO2SINK Project Site, Ketzin, Germany: The Potential for Imaging the Shallow Subsurface

Yordkayhun, Sawasdee January 2008 (has links)
Seismic traveltime inversion, traveltime tomography and seismic reflection techniques have been applied for two dimensional (2D) and three dimensional (3D) data acquired in conjunction with site characterization and monitoring aspects at a carbon dioxide (CO2) geological storage site at Ketzin, Germany (the CO2SINK project). Conventional seismic methods that focused on investigating the CO2 storage and caprock formations showed a poor or no image of the upper 150 m. In order to fill this information gap, an effort on imaging the shallow subsurface at a potentially risky area at the site is the principal goal of this thesis. Beside this objective, a seismic source comparison from a 2D pilot study for acquisition parameter testing at the site found a weight drop source suitable with respect to the signal penetration, frequency content of the data and minimizing time and cost for 3D data acquisition. For the Ketzin seismic data, the ability to obtain high-quality images is limited by the acquisition geometry, source-generated noise and time shifts due to near-surface effects producing severe distortions in the data. Moreover, these time shifts are comparable to the dominant periods of the reflections and to the size of structures to be imaged. Therefore, a combination of seismic refraction and state-of-the-art processing techniques, including careful static corrections and more accurate velocity analysis, resulted in key improvements of the images and allowed new information to be extracted. The results from these studies together with borehole information, hydrogeologic models and seismic modeling have been combined into an integrated interpretation. The boundary between the Quaternary and Tertiary unit has been mapped. The internal structure of the Quaternary sediments is likely to be complicated due to the shallow aquifer/aquitard complex, whereas the heterogeneity in the Tertiary unit is due to rock alteration associated with fault zones. Some of the major faults appear to project into the Tertiary unit. These findings are important for understanding the potentially risky anticline crest and can be used as a database for the future monitoring program at the site.
6

2D and 3D Seismic Surveying at the CO2SINK Project Site, Ketzin, Germany: The Potential for Imaging the Shallow Subsurface

Yordkayhun, Sawasdee January 2008 (has links)
<p>Seismic traveltime inversion, traveltime tomography and seismic reflection techniques have been applied for two dimensional (2D) and three dimensional (3D) data acquired in conjunction with site characterization and monitoring aspects at a carbon dioxide (CO<sub>2</sub>) geological storage site at Ketzin, Germany (the CO<sub>2</sub>SINK project). Conventional seismic methods that focused on investigating the CO<sub>2</sub> storage and caprock formations showed a poor or no image of the upper 150 m. In order to fill this information gap, an effort on imaging the shallow subsurface at a potentially risky area at the site is the principal goal of this thesis.</p><p>Beside this objective, a seismic source comparison from a 2D pilot study for acquisition parameter testing at the site found a weight drop source suitable with respect to the signal penetration, frequency content of the data and minimizing time and cost for 3D data acquisition.</p><p>For the Ketzin seismic data, the ability to obtain high-quality images is limited by the acquisition geometry, source-generated noise and time shifts due to near-surface effects producing severe distortions in the data. Moreover, these time shifts are comparable to the dominant periods of the reflections and to the size of structures to be imaged. Therefore, a combination of seismic refraction and state-of-the-art processing techniques, including careful static corrections and more accurate velocity analysis, resulted in key improvements of the images and allowed new information to be extracted. The results from these studies together with borehole information, hydrogeologic models and seismic modeling have been combined into an integrated interpretation. The boundary between the Quaternary and Tertiary unit has been mapped. The internal structure of the Quaternary sediments is likely to be complicated due to the shallow aquifer/aquitard complex, whereas the heterogeneity in the Tertiary unit is due to rock alteration associated with fault zones. Some of the major faults appear to project into the Tertiary unit. These findings are important for understanding the potentially risky anticline crest and can be used as a database for the future monitoring program at the site.</p>
7

Sedimentology of a Lower Middle Pleistocene Reservoir in Garden Banks Area, Northern Gulf of Mexico: Integration of 3D Seismic, Cores, and Well Logs

O'Brien, Sean P. 14 May 2010 (has links)
Garden Banks field 236, known as Pimento, is part of a lower middle Pleistocene submarine-fan deposit in the north central Gulf of Mexico. Pimento field represents a classic example of a prograding fan across the continental shelf continuing across the continental slope filling and spilling minibasins. Channel complexes cut through the field as sediment migrated across the shelf and slope to the basin floor. This thesis consists of two papers which utilized donated 3D seismic data on six of the blocks in Pimento field. Public domain data was incorporated with these data to explore the producing reservoir sand in the field. Mapped horizons revealed the overall structural elements of the field including the fill and spill facies of the minibasin that directly influences the deposition of the field. In these papers, channel complexes have been resolved using seismic geomorphological techniques and cross sections. Two potential drilling targets have also been discovered and one has been initially investigated as a drilling target.
8

3-D Seismic structural interpretation : insights to thrust faulting and paleo-stress field distribution in the deep offshore Orange Basin, South Africa

Cindi, Brian Msizi January 2016 (has links)
>Magister Scientiae - MSc / The Orange Basin provides exceptional 3-D structures of folds and faults generated during soft-sediment slumping and deformation which is progressive in nature. 3-D seismic and structural evaluation techniques have been used to understand the geometric architecture of the gravity collapse structures. The location of the seismic surveyed area is approximately 370 km northwest of the Port of Saldanha. The interpretation of gravitational tectonics indicate significant amount of deformation that is not accounted for in the imaged thrust belt structure. The Study area covers 8200 square kilometre (km²) of the total 130 000 km² area of the Orange Basin offshore South Africa. The south parts of the Study area are largely featureless towards the shelf area. The north has chaotic seismic facies as the result of an increase in thrust faults in seismic facies 2. Episodic gravitational collapse system of the Orange Basin margin characterizes the late Cretaceous post-rift evolution. This Study area shows that implications of stress field and thrust faulting to the thickness change by gravity collapse systems are not only the result of geological processes such as rapid sedimentation, margin uplift and subsidence, but also could have occurred as the result of the possible meteorite impact. These processes caused gravitational potential energy contrast and created gravity collapse features that are observed between 3000-4500ms TWT intervals in the seismic data. / Shell Exploration & Production Company
9

Three-dimensional gas migration and gas hydrate systems of south Hydrate Ridge, offshore Oregon

Graham, Emily Megan 15 July 2011 (has links)
Hydrate Ridge is a peanut shape bathymetric high located about 80 km west of Newport, Oregon on the Pacific continental margin, within the Cascadia subduction zone’s accretionary wedge. The ridge's two topographic highs (S. and N. Hydrate Ridge) are characterized by gas vents and seeps that were observed with previous ODP initiatives. In 2008, we acquired a 3D seismic reflection data set using the P-Cable acquisition system to characterize the subsurface fluid migration pathways that feed the seafloor vent at S. Hydrate Ridge. The new high-resolution data reveal a complex 3D structure of localized faulting within the gas hydrate stability zone (GHSZ). We interpret two groups of fault-related migration pathways. The first group is defined by regularly- and widely-spaced (100-150 m) faults that extend greater than 300ms TWT (~ 250 m) below seafloor and coincide with the regional thrust fault orientations of the Oregon margin. The deep extent of these faults makes them potential conduits for deeply sourced methane and may include thermogenic methane, which was found with shallow drilling during ODP Leg 204. As a fluid pathway these faults may complement the previously identified sand-rich, gas-filled stratigraphic horizon, Horizon A, which is a major gas migration pathway to the summit of S. Hydrate Ridge. The second group of faults is characterized by irregularly but closely spaced (~ 50 m), shallow fractures (extending < 160ms TWT below seafloor, ~ 115 m) found almost exclusively in the GHSZ directly beneath the seafloor vent at the summit of S. Hydrate Ridge. These faults form a closely-spaced network of fractures that provide multiple migration pathways for free gas entering the GHSZ to migrate vertically to the seafloor. We speculate that the faults are the product of hydraulic fracturing due to near-lithostatic gas pressures at the base of the GHSZ. These fractures may fill with hydrate and develop a lower permeability, which will lead to a buildup of gas pressures below the GHSZ. This may lead to a vertical propagation of new fractures to release the overpressure, which results in the high concentration of shallow fractures within the GHSZ seen in the 2008 data. / text
10

HIGH-RESOLUTION 3D SEISMIC INVESTIGATIONS OF HYDRATE-BEARING FLUID-ESCAPE CHIMNEYS IN THE NYEGGA REGION OF THE VØRING PLATEAU, NORWAY

Westbrook, Graham K., Exley, Russell, Minshull, T.A., Nouzé, Hervé, Gailler, Audrey, Jose, Tesmi, Ker, Stephan, Plaza, Andreia 07 1900 (has links)
Hundreds of pockmarks and mounds, which seismic reflection sections show to be underlain by chimney-like structures, exist in southeast part of the Vøring plateau, Norwegian continental margin. These chimneys may be representative of a class of feature of global importance for the escape of methane from beneath continental margins and for the provision of a habitat for the communities of chemosynthetic biota. Thinning of the time intervals between reflectors in the flanks of chimneys, observed on several high-resolution seismic sections, could be caused by the presence of higher velocity material such as hydrate or authigenic carbonate, which is abundant at the seabed in pockmarks in this area. Evidence for the presence of hydrate was obtained from cores at five locations visited by the Professor Logachev during TTR Cruise 16, Leg 3 in 2006. Two of these pockmarks, each about 300-m wide with active seeps within them, were the sites of high-resolution seismic experiments employing arrays of 4-component OBS (Ocean-Bottom Seismic recorders) with approximately 100-m separation to investigate the 3D variation in their structure and properties. Shot lines at 50-m spacing, run with mini-GI guns fired at 8-m intervals, provided dense seismic coverage of the sub-seabed structure. These were supplemented by MAK deep-tow 5-kHz profiles to provide very high-resolution detail of features within the top 1-40 m sub-seabed. Travel-time tomography has been used to detail the variation in Vp and Vs within and around the chimneys. Locally high-amplitude reflectors of negative polarity in the flanks of chimneys and scattering and attenuation within the interiors of the chimneys may be caused by the presence of free gas within the hydrate stability field. A large zone of free gas beneath the hydrate stability field, apparently feeding several pockmarks, is indicated by attenuation and velocity pull-down of reflectors.

Page generated in 0.0482 seconds