• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 4
  • 4
  • 4
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

3-D Seismic structural interpretation : insights to thrust faulting and paleo-stress field distribution in the deep offshore Orange Basin, South Africa

Cindi, Brian Msizi January 2016 (has links)
>Magister Scientiae - MSc / The Orange Basin provides exceptional 3-D structures of folds and faults generated during soft-sediment slumping and deformation which is progressive in nature. 3-D seismic and structural evaluation techniques have been used to understand the geometric architecture of the gravity collapse structures. The location of the seismic surveyed area is approximately 370 km northwest of the Port of Saldanha. The interpretation of gravitational tectonics indicate significant amount of deformation that is not accounted for in the imaged thrust belt structure. The Study area covers 8200 square kilometre (km²) of the total 130 000 km² area of the Orange Basin offshore South Africa. The south parts of the Study area are largely featureless towards the shelf area. The north has chaotic seismic facies as the result of an increase in thrust faults in seismic facies 2. Episodic gravitational collapse system of the Orange Basin margin characterizes the late Cretaceous post-rift evolution. This Study area shows that implications of stress field and thrust faulting to the thickness change by gravity collapse systems are not only the result of geological processes such as rapid sedimentation, margin uplift and subsidence, but also could have occurred as the result of the possible meteorite impact. These processes caused gravitational potential energy contrast and created gravity collapse features that are observed between 3000-4500ms TWT intervals in the seismic data. / Shell Exploration & Production Company
2

Submarine mass movement processes on the North Sea Fan as interpreted from the 3D seismic data

Gafeira Gonçalves, Joana January 2010 (has links)
This research has been focused on the characterisation and analysis of the deposits of large-scale mass movement events that shaped the North Sea Fan since the Mid-Pleistocene. Located at the mouth of the cross-shelf trough Norwegian Channel, the North Sea Fan is one of the largest through-mouth fans in the glaciated european margin with an area of approximately 142,000 km2. Submarine mass movement processed have occurred intermittenrly throughout the Quarternary history of the North Sea Fan, related to recurrent climate-related episodes of growth and retreat of the ice sheets. These processes can transport large amounts of sediment from the upper shelf up to the abyssal basins, playing an important role on the evolution of continental margins and can also reporesnet major geological hazards. This thesis uses mainly 3D seismic data to investigate the external geometry and internal structure of large-scale mass movement deposits. The high spatial resolution provided by the 3D seismic data has allowed a detailed geomorpholocial analysis of these deposits, This study involved the interpretation of the seismic data and the detailed pickling of key reflectors followed by tge extraction of both horizon and window-based seismic attributes. Digital elevation models of the key reflectors and their seismic attribute maps were then transferred to a geographical information system (GIS) where they were interactively interpreted using spatial analysis tools and the full visualisation potential of the software. The outcomes of this study highlight the importance of detailed horizon pickling and interactice interpretation followed by spatial analysis and visualisation in GIS environment. The identification of acoustic patterns within deposits that are normally described from 2D seismic as chaotic or acoustically transparent emphasizes the potential of detailed analysis of 3D seismic data. It gives an example of how this type of data can provide new insights into the mechanisms and processes associated with mass movements. In particular, amplitude and RMS amplitude maps provide remarkable detailed information of internal deformation structures whereas slope, shaded-relief and thickness maps allowed detailed characterisation of the external geometry. Various types of kinematic indicators can be recognized within the mass movement deposits through combined seismic analysis and detaield morphological mapping.
3

ANALYSIS AND INTERPRETATION OF 2D/3D SEISMIC DATA OVER DHURNAL OIL FIELD, NORTHERN PAKISTAN

Afsar, Fatima January 2013 (has links)
The study area, Dhurnal oil field, is located 74 km southwest of Islamabad in the Potwar basin of Pakistan. Discovered in March 1984, the field was developed with four producing wells and three water injection wells. Three main limestone reservoirs of Eocene and Paleocene ages are present in this field. These limestone reservoirs are tectonically fractured and all the production is derived from these fractures. The overlying claystone formation of Miocene age provides vertical and lateral seal to the Paleocene and Permian carbonates. The field started production in May 1984, reaching a maximum rate of 19370 BOPD in November 1989. Currently Dhurnal‐1 (D-1) and Dhurnal‐6 (D-6) wells are producing 135 BOPD and 0.65 MMCF/D gas. The field has depleted after producing over 50 million Bbls of oil and 130 BCF of gas from naturally fractured low energy shelf carbonates of the Eocene, Paleocene and Permian reservoirs. Preliminary geological and geophysical data evaluation of Dhurnal field revealed the presence of an up-dip anticlinal structure between D-1 and D-6 wells, seen on new 2003 reprocessed data. However, this structural impression is not observed on old 1987 processed data. The aim of this research is to compare and evaluate old and new reprocessed data in order to identify possible factors affecting the structural configuration. For this purpose, a detailed interpretation of old and new reprocessed data is carried out and results clearly demonstrate that structural compartmentalization exists in Dhurnal field (based on 2003 data). Therefore, to further analyse the available data sets, processing sequences pertaining to both vintages have been examined. After great effort and detailed investigation, it is concluded that the major parameter giving rise to this data discrepancy is the velocity analysis done with different gridding intervals. The detailed and dense velocity analysis carried out on the data in 2003 was able to image the subtle anticlinal feature, which was missed on the 1987 processed seismic data due to sparse gridding. In addition to this, about 105 sq.km 3D seismic data recently (2009) acquired by Ocean Pakistan Limited (OPL) is also interpreted in this project to gain greater confidence on the results. The 3D geophysical interpretation confirmed the findings and aided in accurately mapping the remaining hydrocarbon potential of Dhurnal field.
4

Shelf-edge deltas : stratigraphic complexity and relationship to deep-water deposition

Dixon, Joshua Francis 08 November 2013 (has links)
This research investigates the character and significance of shelf-edge deltas within the sedimentary source-to-sink system, and how variability at the shelf edge leads to different styles of deep-water deposition. Because the shelf-edge represents one of the key entry points for terrigenous sediment to be delivered into the deep water, understanding of the sedimentary processes in operation at these locations, and the character of sediment transported through these deltas is critical to understanding of deep-water sedimentary systems. The research was carried out using three datasets: an outcrop dataset of 6000 m of measured sections from the Permian-Triassic Karoo Basin, South Africa, a 3D seismic data volume from the Eocene Northern Santos Basin, offshore Brazil and a dataset of 29 previously published descriptions of shelf-edge deltas from a variety of locations and data types. The data presented highlight the importance of sediment instability in the progradation of basin margins, and deep-water transport of sediment. The strata of the Karoo Basin shelf margin represent river-dominated delta deposits that become more deformed as the shelf-edge position is approached. At the shelf edge, basinward dipping, offlapping packages of soft-sediment-deformed and undeformed strata record repetitive collapse and re-establishment of shelf-edge mouth bar packages. The offlapping strata of the Karoo outcrops record progradation of the shelf margin through accretion of the shelf-edge delta, for over 1 km before subsequent transgression. The Eocene Northern Santos Basin shelf margin, in contrast, exhibits instability features which remove kilometers-wide wedges of the outer shelf that are transported to the basin floor to be deposited as mass-transport packages. In this example, shelf-edge progradation is achieved through „stable. accretion of mixed turbidites and contourites. The data also emphasize the importance of the role of shelf-edge delta processes in the delivery of sediment to the basin floor. A global dataset of 29 examples of shelf-edge systems strongly indicates that river domination of the shelf-edge system (as read from cores, well logs or isopach maps) serves as a more reliable predictor of deep-water sediment delivery and deposition than relative sea level fall as traditionally read in shelf-edge trajectories or sequence boundaries. / text

Page generated in 0.0457 seconds