• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 3
  • 3
  • 3
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Investigating subsurface heterogeneities and its impact on the variation in interval velocities : implications to velocity modelling in the Bredasdorp basin

Hashim, Muazzam Ali January 2015 (has links)
>Magister Scientiae - MSc / Velocity modelling forms an integral part of the seismic interpretation process initially completed in two-way time. In order for a representative depth conversion, it is obligatory to construct a velocity model that serves the bridge between velocity and respective two-way time. This study deals with the investigation of subsurface heterogeneities and its impact on the variation of velocities. Interpretation of time domain reflection data results in one or more seismic horizons, however these horizons should represent the variation in subsurface geology as a result of acoustically different layers displaying varying reflection amplitudes. The purpose of this study was fulfilled by examining the variation of these velocities in relation to the geology and its significance towards building a velocity model. It is evident that complexities, such as an existing heterogeneous subsurface is present in the study area. Using velocities only considered at formation well tops, as a result, does not completely honour the variation in these velocities. The velocity profile as calculated from the sonic log was characterized into zones representing unique velocity trends. The analyses to understand the impact of subsurface heterogeneities on the velocities was completed by the application of seismic facies analysis which entailed the study of the seismic reflector patterns and amplitudes; a study of the lithologies present and the generation of mineral plots using available wireline logs, all of which in close relation to the variation in velocities. The characterized zones, as a result have shown that shaly sediments are typically associated with higher velocities (~2800 – 4600m/s) compared to sandstones of lower densities. Mineral plots however, have also indicated that where quartz minerals were present (specifically zone L), sandstones as a result have shown higher velocities (~4800m/s) as compared to the shales (~3600m/s). These higher velocities are also associated with more organised seismic reflectors with brighter amplitudes and strong contrasts in acoustic impedance as shown by the seismic. Uniform velocities were observed in zones such as zone Ia, typically associated with a low acoustic impedance contrast and minimal variation in its lithological make-up. The integrated investigation of subsurface heterogeneities has shown that velocities vary to a substantial degree as a result of existing subsurface heterogeneities. The variation of these velocities are hence significant enough that it should be considered when constructing a velocity model which aims to respect the geology of the study area. The result of understanding the relation between the geology and resultant velocities may prove to advance the results of the velocity model in a manner that it is more complete and representative of the subsurface.
2

Acoustic velocity structure of the carboneras fault zone, SE Spain

Taylor, Rochelle Louise January 2013 (has links)
The Carboneras fault zone (CFZ, Almería Province, SE Spain) is a major NE-SW trending tectonic lineament that marks part of the diffuse plate boundary between Iberia and Africa. Developed within a basement terrain dominated by mica schist, the fault system comprises two main strands within a complex zone up to 1 km wide. Between these two strands is a braided network of left-lateral strike-slip, phyllosilicate-rich fault gouge bands, ranging between 1 and 20 m in thickness, passively exhumed from up to 3 km depth. The excellent exposure in a semi-arid environment, the wide range of rock types and fault structures represented and the practicality of carrying out in-situ geophysical studies makes this fault zone particularly well suited to verifying and interpreting the results of in-situ seismic investigations. Integration of elements of field study, laboratory analysis and modelling has aided interpretation of the internal structure of the fault zone. Ultrasonic measurements were made using standard equipment over confining and pore pressure ranges appropriate to the upper 10 km of the continental crust. Seismic velocities have also been approximated from modal analysis and mineral phase elastic properties and adjusted for the effects of porosity. In-situ seismic investigations recorded P-wave velocities 40-60% lower than those measured in the laboratory under corresponding pressures and at ambient temperatures for hard rock samples. Fault gouge velocities measured in the laboratory, however, are comparable to those measured in the field because, unlike the host rocks, fault gouges are only pervasively micro-fractured and lack the populations of long cracks (larger than the sample size) that cause slowing of the velocities measured in the field. By modelling the effect of fractures on seismic velocity (by superimposing upon the laboratory seismic data the effects of crack damage) the gap between field- and laboratory-scale seismic investigations has been bridged. Densities of macroscopic cracks were assessed by measuring outcrop lengths on planar rock exposures. Assuming crack length follows a power law relation to frequency, this fixes a portion of the power spectrum, which is then extrapolated to cover the likely full range of crack sizes. The equations of Budiansky and O'Connell (1976), linking crack density to elastic moduli, were used to calculate modified acoustic velocities, and the effects of the wide range of crack sizes were incorporated by breaking the distribution down into small sub-populations of limited range of crack density. Finally, the effect of overburden pressure causing progressively smaller cracks to close was incorporated to predict velocity versus depth of burial (i.e. pressure). Determination of rock physical properties from laboratory analysis and sections constructed from geological mapping provides a representation of velocity from selected parts of the Carboneras fault zone. First break tomography images show particularly well the location of steeply-inclined fault cores, and these correlate generally well with geological mapping and laboratory velocity measurements corrected for the effect of cracks. The decoration of the fault zone with intrusive igneous material is well correlated with the results of geological observations. Comparisons made between the field (seismic) inversion model and laboratory forward velocity model in El Saltador valley show the laboratory and field velocity measurements made within the fault zone can be reconciled by accounting for the effects of crack damage in field data.
3

ANALYSIS AND INTERPRETATION OF 2D/3D SEISMIC DATA OVER DHURNAL OIL FIELD, NORTHERN PAKISTAN

Afsar, Fatima January 2013 (has links)
The study area, Dhurnal oil field, is located 74 km southwest of Islamabad in the Potwar basin of Pakistan. Discovered in March 1984, the field was developed with four producing wells and three water injection wells. Three main limestone reservoirs of Eocene and Paleocene ages are present in this field. These limestone reservoirs are tectonically fractured and all the production is derived from these fractures. The overlying claystone formation of Miocene age provides vertical and lateral seal to the Paleocene and Permian carbonates. The field started production in May 1984, reaching a maximum rate of 19370 BOPD in November 1989. Currently Dhurnal‐1 (D-1) and Dhurnal‐6 (D-6) wells are producing 135 BOPD and 0.65 MMCF/D gas. The field has depleted after producing over 50 million Bbls of oil and 130 BCF of gas from naturally fractured low energy shelf carbonates of the Eocene, Paleocene and Permian reservoirs. Preliminary geological and geophysical data evaluation of Dhurnal field revealed the presence of an up-dip anticlinal structure between D-1 and D-6 wells, seen on new 2003 reprocessed data. However, this structural impression is not observed on old 1987 processed data. The aim of this research is to compare and evaluate old and new reprocessed data in order to identify possible factors affecting the structural configuration. For this purpose, a detailed interpretation of old and new reprocessed data is carried out and results clearly demonstrate that structural compartmentalization exists in Dhurnal field (based on 2003 data). Therefore, to further analyse the available data sets, processing sequences pertaining to both vintages have been examined. After great effort and detailed investigation, it is concluded that the major parameter giving rise to this data discrepancy is the velocity analysis done with different gridding intervals. The detailed and dense velocity analysis carried out on the data in 2003 was able to image the subtle anticlinal feature, which was missed on the 1987 processed seismic data due to sparse gridding. In addition to this, about 105 sq.km 3D seismic data recently (2009) acquired by Ocean Pakistan Limited (OPL) is also interpreted in this project to gain greater confidence on the results. The 3D geophysical interpretation confirmed the findings and aided in accurately mapping the remaining hydrocarbon potential of Dhurnal field.

Page generated in 0.0913 seconds