Spelling suggestions: "subject:"[een] AD-HOC NETWORKS"" "subject:"[enn] AD-HOC NETWORKS""
91 |
Achieving quality of service in mobile ad hoc networks containing packet forwarding attackersMcnerney, Peter Joseph John January 2013 (has links)
In future, Mobile Ad Hoc Networks (MANETs) may provide access to services in the Internet. MANETs should therefore support diverse applications and data types. This introduces a need for quality of service (QoS), a process of discriminating different data types to provide them with an appropriate level of service. However, QoS can be affected by nodes performing packet forwarding attacks. A critical analysis of the related literature shows that research into QoS and security has typically proceeded independently. However, QoS and security should be considered together as attacks may adversely affect QoS. A simulation study demonstrates this by investigating two single-path packet forwarding approaches under a range of conditions. The study shows that using single-path packet forwarding in the presence of attackers is generally insufficient to support QoS.Based on this background research, a novel 2-Dimensional Adaptation ARChitecture (2-DAARC) and a Priority-based Multi-path Type Selection (PMTS) algorithm are proposed. 2-DAARC integrates two modes of adaptation. The single-path adaptation (SPA) mode uses adaptive bandwidth reservations over a single path for QoS in the presence of node mobility. The multi-path adaptation (MPA) mode uses duplicated data packet transmissions over multiple paths for QoS in the presence of packet forwarding attackers. Adaptation occurs within and between modes to optimize priority packet forwarding in the dynamic MANET environment. The MPA mode uses the PMTS algorithm to select a secondary path which is maximally-disjoint with the primary path. This aims to select a path which may enhance reliability whilst keeping the costs of path selection low. Simulating 2-DAARC shows that under light loads it achieves better QoS than related work, but with a higher control packet overhead. Simulating PMTS shows that under light loads it achieves packet deliveries which are at best as good as a related approach, with lower end-to-end delays and control packet overhead. A novel Congestion and ATtack (CAT) detection mechanism is proposed to improve the performance of 2-DAARC in heavily loaded networks. CAT detection differentiates the causes of packet loss so that adaptation can be better tailored to the network conditions. Without CAT detection, 2-DAARC uses the MPA mode in congested conditions, and this worsens QoS. Simulating 2-DAARC with CAT detection shows that it generally achieves packet deliveries which are greater than or similar to, and end-to-end delays which are less than or similar to related work, and it does so with a lower control packet overhead.
|
92 |
A Novel Approach for MAC and PHY Performance Analysis in Relay Networks in Presence of Interference and Shadow FadingAlkandari, Bader A. 01 September 2019 (has links)
Relays in communication networks is a well-researched topic. Historically, relays were used in analog radio and television to extend the coverage. Using relays in wireless data networking applications is a more recent problem. In the early 2000s, relays were introduced for Micro-cellular and Wi-Fi deployments. Recently it has been considered for sensor networks and Vehicular Ad-hoc Networks (VANETs) applications.
In this dissertation we present a novel approach to determine the optimal bounds for the Medium Access Control (MAC) throughput at the target receiver in a multi-hop multirate wireless data network. For a given relationship between the throughput and the distance, and a given distance between the access point and the target receiver, there is a minimum number of nodes that provides the maximum throughput to the target receiver. It is always desirable to optimize the deployment from various aspects. These aspects are application dependent and they range from energy conservation in sensor networks to throughput and coverage maximization in data networks.
We apply this novel approach to vehicular ad-hoc network (VANET) scenarios. Using multi-hop relays, we show how to determine the optimum throughput for communciation between two vehicles. The optimal number of relays is chosen to maximize the throughput for point-to-point communication between a source and a destination as well as broadcast among all vehicles in the coverage area of the source.
Additionally, in the physical layer, performance issues arise from the effects of interference and fading. The physical layer performance will in turn impact medium access control performance, effectively reducing the network throughput. We evaluate the ii performance of dense small cells for wireless local area networks (WLAN) and femto cells for data applications under the effects of interference and fading. We assume the network is fully saturated. We use the throughput-distance relationship to take into consideration the effects of interference, fading as well as the medium access control overheads. Using this model, we show that under certain conditions, the medium access control throughput for WLANs can outperform that of femto cells.
|
93 |
TCP Performance in Wireless Mobile Multi-hop Ad Hoc NetworksWestin, Ola January 2003 (has links)
There are many issues that limit the performance of wireless mobile multi-hop ad hoc networks (MANETs). One of them is that TCP is not well adapted to networks where routes can change or disappear often. In this paper the behaviour of a standard TCP implementation is studied in situations typical for MANETs and compared to the behaviour of a partial implementation of a ATCP, a TCP modification that is intended to increase performance in MANETs. Simulations with simple scenarios show that TCP easily creates a full network load which causes send failures and decreased throughput performance. In some cases the partial ATCP implementation increases throughput but more often it causes an increased amount of duplicate retransmissions. In these scenarios it is unlikely that even a complete ATCP implementation would increase throughput performance. A few modifications to ATCP and TCP are analysed. Especially a limit of the congestion window size shows a large throughput increase. The results are inconclusive, the simulations are too simple to show if the results are applicable in more complex scenarios. It is not clear if ATCP actually is useful in a MANET. / Många faktorer begränsar prestandan i trådlösa mobila multi-hopp ad hoc-nätverk (MANET:er). En av dem är att TCP inte är anpassat till nätverk där rutter ofta kan förändras eller försvinna. I den här rapporten studeras hur en vanlig TCP-implementation uppför sig i typiska MANET-situationer. Detta beteende jämförs mot en partiell implementation av ATCP, en TCPmodifiering som är tänkt att öka prestanda i MANET:er. Simuleringar med enkla scenarier visar att TCP lätt genererar en full nätverkslast vilket orsakar misslyckade sändningar och en minskad genomströmningsprestanda. I vissa fall ökar den partiella ATCP-implementationen genomströmningen, men oftare ger den en ökad mängd onödiga omsändningar. I dessa scenarier är det inte troligt att ens en komplett ATCP-implementation skulle öka genomströmningsprestanda. Några mindre förändringar av ATCP och TCP analyseras. Särskilt ger en begränsning av stockningsfönstret en stor ökning av genomströmningen. Resultaten är ofullständiga. Simuleringarna är för enkla för att kunna visa om om resultaten är tillämpliga i mer komplexa scenarier. Det är inte klarlagt ifall ATCP verkligen är användbart i ett MANET.
|
94 |
Incentivizing Cooperation in Mobile Ad Hoc Networks: An Experiment, A Coalition Game Theory Model, and OLSR IntegrationHilal, Amr E. 17 October 2013 (has links)
Although smart mobile devices have only come into prominence recently, they have quickly become a necessity in the modern world. In 2012, more than 450 million new smartphones are expected to be purchased around the world, exceeding, for the first time, purchases of laptops and desktop PCs combined in a single year. That, in addition to the increasing processing power and low cost of these emerging mobile devices, creates an increasing demand for mobile applications that work in infrastructure-supported environments like WiFi and cellular networks as well as infrastructure-less environments like ad hoc networks. Therefore, the behavior of mobile devices in such scenarios should be a continued focus of research.
Several factors contribute to the observed behavior of nodes in Mobile Ad-hoc Networks MANETs. For example, nodes may act selfishly to preserve their limited energy resources. This selfishness may be detrimental to network performance. Therefore, cooperation between peers is necessary to keep these MANETs operational. Beside the need for actively encouraging cooperation by providing incentives, passive encouragement is also needed to overcome the effect of factors that limit cooperation, including malicious behavior, environmental obstruction, and mobility.
The contribution of this work is to provide a cooperation model in MANETs that is capable of surviving topology distortions caused by mobility, and is operable in practical distributed scenarios. Towards this goal, we first provide a study of the topology characteristics of MANETs based on real experiments. We study the node degree, link stability, and link symmetry of these networks, and, based on our observations, we suggest a two-state Markov model to model link state in such networks, demonstrating the superiority of this model over the widely-used disk model with mobility. We conclude from this study that both mobility and channel fluctuations have a significant influence on the network topology, which makes it important to study cooperation in scenarios where the topology is changing rapidly.
Based on experimental observations of a real network, we propose a coalition game model for cooperation in MANETs that shows that stable, effective coalitions can be maintained, even in the face of a dynamic network topology. We provide an initial evaluation of the model using a centralized simulation approach. We use the notion of reachability to evaluate the proposed model, and we simulate the model under different speeds and node densities. Our simulations show that reachability can be sustained at stable levels despite the deterioration caused by mobility. In addition, we show that our cumulative coalition formation approach gives good results in terms of reachability level and computational complexity. We also show that our proposed model achieves a fair payoff distribution among participating nodes.
Motivated by the promising results of our centralized simulation approach, we take a further step towards more practical evaluation. We integrate the cooperation model with an existing MANET routing protocol, OLSR, and evaluate it in this distributed environment. We modify and augment the OLSR messaging mechanism to enable the exchange of the coalition information required to keep the model operating. Beside ensuring that the reachability gain is still attained and the coalition structure is stable, we study the effect of the extra control traffic overhead incurred by the model. We compare deliverability over the network with and without the cooperation model. Although our results show that the cooperation model incurs an average overhead exceeding $100\%$ of that incurred by OLSR in high density scenarios, it shows better reliability in delivering traffic especially among selfish nodes in low and average density scenarios.
Counter to what is commonly assumed in the literature, this study shows that cooperation can be be maintained in a distributed manner without causing significant traffic overhead to MANETs run by proactive routing protocols. Due to the simplicity, several extensions can be applied to enhance the performance of the proposed model and diversify its usage. We propose these extensions at the end of this dissertation. / Ph. D.
|
95 |
Packet Delivery Delay and Throughput Optimization for Vehicular NetworksMostafa, Ahmad A. 27 September 2013 (has links)
No description available.
|
96 |
Opportunistic Networking : Mobility Modeling and Content DistributionPajevic, Ljubica January 2013 (has links)
We have witnessed two main trends in recent years that have shaped the current state of communication networks. First, the Internet was designed with the initial idea to provide remote access to resources in the network; today it is overwhelmingly being used for content distribution. In addition, the community of content creators has evolved from a small group of professionals into a global community where every user can generate his contents and share it with other users. Second, the proliferation of personal mobile devices, such as smartphones and media tablets, has altered the way people access, create and share information, leading to a significant migration from wired to wireless networks and raising user expectations for ubiquitous connectivity. These trends have incited research on new communication modes and in this thesis we consider a specific mode, namely opportunistic networking. Opportunistic networking is a communication paradigm that utilizes intermittent connectivity between mobile devices to enable communication in infrastructure-less environments, and to provide complementary transport mechanisms in wireless networks where infrastructure is present. The thesis focuses on two main topics: understanding and modeling human mobility, and opportunistic content distribution. Mobility modeling is one of the key issues in opportunistic networking research. First, we discuss the structure of human mobility and introduce a framework to study mobility at different behavioural levels. We propose a queuing model, denoted by meeting-point model, for pedestrian mobility in smaller urban areas, such as city squares, parks, shops or at bus stops. The model is also a contribution to the second topic we address in the thesis, since we will use it to study characteristics of content distribution in smaller areas. We envision this model as a building block in a library of analytical models that would be used to study the performance of pedestrian content distribution in common scenarios of urban mobility. Furthermore, we show how the proposed model can be used to build larger, more complex models. In the area of opportunistic content distribution, we apply both analytical and simulation-based evaluation. We empirically study the performance of epidemic content distribution by using real-life mobility traces and investigate the fitness of a homogeneous stochastic model to capture the epidemic process. In addition, we present the design, implementation and evaluation of a mobile peer-to-peer system for opportunistic networking and discuss some promising application scenarios. / <p>QC 20131115</p>
|
97 |
INFORMATION SEARCH AND EXTRACTION IN WIRELESS AD HOC NETWORKSJiang, Hongbo 02 June 2008 (has links)
No description available.
|
98 |
Load Balancing, Queueing and Scheduling Mechanisms in Mobile Ad Hoc NetworksJoshi, Avinash 08 November 2001 (has links)
No description available.
|
99 |
AUTHENTICATED ROUTE FORMATION AND EFFICIENT KEY MANAGEMENT SCHEMES FOR SECURING Ad Hoc NETWORKSPOOSARLA, RAJANI DEVI 02 September 2003 (has links)
No description available.
|
100 |
A SCALABLE EXPLICIT MULTICAST PROTOCOL FOR MOBILE AD HOC NETWORKSANAND, KUMAR January 2004 (has links)
No description available.
|
Page generated in 0.0365 seconds