Spelling suggestions: "subject:"[een] ANALYTICAL SOLUTION"" "subject:"[enn] ANALYTICAL SOLUTION""
41 |
Modelagem analítica da propagação de ondas de tensão em tubos de parede fina visando a localização de uma fonte pontual harmônica em sua superfície / Analytic model of the stress waves propagation in thin wall tubes, seeking the location of a harmonic point source in its surfaceBoaratti, Mario Francisco Guerra 09 June 2006 (has links)
Vazamentos em tubos pressurizados geram ondas acústicas que se propagam através das paredes destes tubos, as quais podem ser captadas por acelerômetros ou por sensores de emissão acústica. O conhecimento de como estas paredes podem vibrar, ou de outro modo como as ondas acústicas se propagam neste meio, é fundamental em um processo de detecção e localização da fonte de vazamento. Neste trabalho, foi implementado um modelo analítico, através das equações de movimento da casca cilíndrica, com o objetivo de entender o comportamento da superfície do tubo em função de uma excitação pontual. Como a superfície cilíndrica é um meio fechado na direção circunferencial, ondas que iniciaram sua jornada, a partir de uma fonte pontual sobre a superfície, se encontrarão com outras que já completaram a volta na casca cilíndrica, tanto no sentido horário como no anti-horário, gerando interferências construtivas e destrutivas. Após um tempo suficiente, uma estacionariedade é atingida, criando pontos de picos e vales na superfície da casca, os quais podem ser visualizadas através de uma representação gráfica do modelo analítico criado. Os resultados teóricos foram comprovados através de medidas realizadas em uma bancada de testes composta de um tubo de aço terminado em caixa de areia, simulando a condição de tubo infinito. Para proceder à localização da fonte pontual sobre a superfície, adotou-se o processo de solução inversa, ou seja, conhecidos os sinais dos sensores dispostos na superfície do tubo, determina-se através do modelo teórico onde a fonte que gerou estes sinais pode estar. / Leaks in pressurized tubes generate acoustic waves that propagate through the walls of these tubes, which can be captured by accelerometers or by acoustic emission sensors. The knowledge of how these walls can vibrate, or in another way, how these acoustic waves propagate in this material is fundamental in the detection and localization process of the leak source. In this work an analytic model was implemented, through the motion equations of a cylindrical shell, with the objective to understand the behavior of the tube surface excited by a point source. Since the cylindrical surface has a closed pattern in the circumferential direction, waves that are beginning their trajectory will meet with another that has already completed the turn over the cylindrical shell, in the clockwise direction as well as in the counter clockwise direction, generating constructive and destructive interferences. After enough time of propagation, peaks and valleys in the shell surface are formed, which can be visualized through a graphic representation of the analytic solution created. The theoretical results were proven through measures accomplished in an experimental setup composed of a steel tube finished in sand box, simulating the condition of infinite tube. To determine the location of the point source on the surface, the process of inverse solution was adopted, that is to say, known the signals of the sensor disposed in the tube surface, it is determined through the theoretical model where the source that generated these signals can be.
|
42 |
Modelagem analítica da propagação de ondas de tensão em tubos de parede fina visando a localização de uma fonte pontual harmônica em sua superfície / Analytic model of the stress waves propagation in thin wall tubes, seeking the location of a harmonic point source in its surfaceMario Francisco Guerra Boaratti 09 June 2006 (has links)
Vazamentos em tubos pressurizados geram ondas acústicas que se propagam através das paredes destes tubos, as quais podem ser captadas por acelerômetros ou por sensores de emissão acústica. O conhecimento de como estas paredes podem vibrar, ou de outro modo como as ondas acústicas se propagam neste meio, é fundamental em um processo de detecção e localização da fonte de vazamento. Neste trabalho, foi implementado um modelo analítico, através das equações de movimento da casca cilíndrica, com o objetivo de entender o comportamento da superfície do tubo em função de uma excitação pontual. Como a superfície cilíndrica é um meio fechado na direção circunferencial, ondas que iniciaram sua jornada, a partir de uma fonte pontual sobre a superfície, se encontrarão com outras que já completaram a volta na casca cilíndrica, tanto no sentido horário como no anti-horário, gerando interferências construtivas e destrutivas. Após um tempo suficiente, uma estacionariedade é atingida, criando pontos de picos e vales na superfície da casca, os quais podem ser visualizadas através de uma representação gráfica do modelo analítico criado. Os resultados teóricos foram comprovados através de medidas realizadas em uma bancada de testes composta de um tubo de aço terminado em caixa de areia, simulando a condição de tubo infinito. Para proceder à localização da fonte pontual sobre a superfície, adotou-se o processo de solução inversa, ou seja, conhecidos os sinais dos sensores dispostos na superfície do tubo, determina-se através do modelo teórico onde a fonte que gerou estes sinais pode estar. / Leaks in pressurized tubes generate acoustic waves that propagate through the walls of these tubes, which can be captured by accelerometers or by acoustic emission sensors. The knowledge of how these walls can vibrate, or in another way, how these acoustic waves propagate in this material is fundamental in the detection and localization process of the leak source. In this work an analytic model was implemented, through the motion equations of a cylindrical shell, with the objective to understand the behavior of the tube surface excited by a point source. Since the cylindrical surface has a closed pattern in the circumferential direction, waves that are beginning their trajectory will meet with another that has already completed the turn over the cylindrical shell, in the clockwise direction as well as in the counter clockwise direction, generating constructive and destructive interferences. After enough time of propagation, peaks and valleys in the shell surface are formed, which can be visualized through a graphic representation of the analytic solution created. The theoretical results were proven through measures accomplished in an experimental setup composed of a steel tube finished in sand box, simulating the condition of infinite tube. To determine the location of the point source on the surface, the process of inverse solution was adopted, that is to say, known the signals of the sensor disposed in the tube surface, it is determined through the theoretical model where the source that generated these signals can be.
|
43 |
Modelagem matemática do espalhamento do poluente mercúrio na águaConza, Adelaida Otazu January 2017 (has links)
O objetivo deste trabalho e a modelagem matem atica da propagaçãao do poluente mercúrio na agua. O modelo bidimensional consiste na drenagem da agua atrav es de um canal, onde o poluente (mercúrio) entra. O modelo consiste em um conjunto de equaçõoes diferenciais parciais: as equações para a conservação da massa, a quantidade de movimento, e a concentração das espécies, sujeitas a condições iniciais e de contorno apropriadas. Estas equações foram discretizadas pelo método de diferenças finitas centrais, gerando sistemas lineares que foram resolvidos pelo método de Gauss-Seidel e a convergência foi acelerada usando a técnica de sobre-relaxações SOR. A an alise da consistência e estabilidade da equação de concentração foi feita. Além disso, a solução analítica da equação de concentração, que e uma equação diferencial parcial bidimensional não homogênea com uma condição de contorno não homogênea, foi obtida com a transformada de Laplace. Os resultados obtidos a partir do modelo numérico e da solução analítica foram comparados e apresentam concordância razoável. / The goal of this work is the mathematical modeling of the spreading of the polluting mercury in the water. The two-dimensional model consists of water drainage through a canal, where the pollutant (mercury) enters. The model consists of a set of partial di erential equations: the equations for the conservation of the mass, the momentum, and the concentration of the species, subject to appropriate initial and boundary conditions. These equations were discretized by the method of central nite di erences, generating linear systems, which were solved by the Gauss-Seidel method and convergence was accelerated using the over-relaxation SOR technique. The analysis of the consistency and stability of the concentration equation was made. Furthermore, the analytical solution of the concentration equation, which is a two-dimensional non-homogeneous partial di erential equation with one nonhomogeneous contour condition, was obtained using Laplace transform. The results obtained from the numerical model and the analytical solution were compared and presented reasonable agreement.
|
44 |
Vortex Driven Acoustic Flow InstabilityBlaette, Lutz 01 May 2011 (has links)
Most combustion machines feature internal flows with very high energy densities. If a small fraction of the total energy contained in the flow is diverted into oscillations, large mechanical or thermal loads on the structure can be the result, which are potentially devastating if not predicted correctly. This is particularly the case for lightweight high performing devices like rockets. The problem is commonly known as "Combustion Instability". Several mechanisms have been identified in the past that link the flow field to the acoustics inside a combustion chamber and thereby drive or dampen oscillations, one of them being vortex shedding. The interaction between the highly sheared flow behind an obstacle and longitudinal acoustic oscillations inside a solid rocket booster is investigated both analytically and experimentally.The analytical approach is developed based on modeling of the second order acoustic energy. The energy model is applied to the specific flow conditions just downstream of a single baffle protruding into the flow. The mean flow profile is assumed to be of the form of a hyperbolic tangent, the unsteady acoustic velocities are assumed to be sinusoidally oscillating. Solutions for the unsteady rotational velocities and the unsteady vorticity are derived. The resulting flow field is utilized in stability calculations for a simplified two-dimensional axial-symmetric geometry. This yields to linear growth rates of the (longitudinal) oscillation modes. The growth rates are functions of the chamber geometry, the mean flow properties and the properties of the shear layer created by the flow restriction.A cold flow experiment is designed, tested and performed in order to validate the analytical findings. Flow is injected radially into a tube with acoustic closed-closed end conditions. A single baffle is installed in the tube, the axial position of the baffle is varied as well as its inner diameter. Frequency spectra of pressure oscillations are recorded. The experimental data is then compared qualitatively to the analytical growth rates. Those longitudinal Normal Modes, which feature the highest theoretical growth rates, are expected to be most prominent in the experimental data. This behavior is clearly observable.
|
45 |
Analytical vortex solutions to Navier-Stokes equationTryggeson, Henrik January 2007 (has links)
Fluid dynamics considers the physics of liquids and gases. This is a branch of classical physics and is totally based on Newton's laws of motion. Nevertheless, the equation of fluid motion, Navier-Stokes equation, becomes very complicated to solve even for very simple configurations. This thesis treats mainly analytical vortex solutions to Navier-Stokes equations. Vorticity is usually concentrated to smaller regions of the flow, sometimes isolated objects, called vortices. If one are able to describe vortex structures exactly, important information about the flow properties are obtained. Initially, the modeling of a conical vortex geometry is considered. The results are compared with wind-tunnel measurements, which have been analyzed in detail. The conical vortex is a very interesting phenomenaon for building engineers because it is responsible for very low pressures on buildings with flat roofs. Secondly, a suggested analytical solution to Navier-Stokes equation for internal flows is presented. This is based on physical argumentation concerning the vorticity production at solid boundaries. Also, to obtain the desired result, Navier-Stokes equation is reformulated and integrated. In addition, a model for required information of vorticity production at boundaries is proposed. The last part of the thesis concerns the examples of vortex models in 2-D and 3-D. In both cases, analysis of the Navier-Stokes equation, leads to the opportunity to construct linear solutions. The 2-D studies are, by the use of diffusive elementary vortices, describing experimentally observed vortex statistics and turbulent energy spectrums in stratified systems and in soapfilms. Finally, in the 3-D analysis, three examples of recent experimentally observed vortex objects are reproduced theoretically. First, coherent structures in a pipe flow is modeled. These vortex structures in the pipe are of interest since they appear for Re in the range where transition to turbulence is expected. The second example considers the motion in a viscous vortex ring. The model, with diffusive properties, describes the experimentally measured velocity field as well as the turbulent energy spectrum. Finally, a streched spiral vortex is analysed. A rather general vortex model that has many degrees of freedom is proposed, which also may be applied in other configurations.
|
46 |
Analytical Solutions Of Shallow-water Wave EquationsAydin, Baran 01 June 2011 (has links) (PDF)
Analytical solutions for the linear and nonlinear shallow-water wave equations are developed for evolution and runup of tsunamis &ndash / long waves&ndash / over one- and two-dimensional bathymetries. In one-dimensional case, the nonlinear equations are solved for a plane beach using the hodograph transformation with eigenfunction expansion or integral transform methods under different initial conditions, i.e., earthquake-generated waves, wind set-down relaxation, and landslide-generated waves. In two-dimensional case, the linear shallow-water wave equation is solved for a flat ocean bottom for initial waves having finite-crest length. Analytical verification of source focusing is presented. The role of focusing in unexpectedly high tsunami runup observations for the 17 July 1998 Papua New Guinea and 17 July 2006 Java Island, Indonesia tsunamis are investigated. Analytical models developed here can serve as benchmark solutions for numerical studies.
|
47 |
The interaction of atomic systems with coherent and stochastic fieldsBerry, Paul A. D. January 2000 (has links)
No description available.
|
48 |
The well-posedness and solutions of Boussinesq-type equationsLin, Qun January 2009 (has links)
We develop well-posedness theory and analytical and numerical solution techniques for Boussinesq-type equations. Firstly, we consider the Cauchy problem for a generalized Boussinesq equation. We show that under suitable conditions, a global solution for this problem exists. In addition, we derive sufficient conditions for solution blow-up in finite time. / Secondly, a generalized Jacobi/exponential expansion method for finding exact solutions of non-linear partial differential equations is discussed. We use the proposed expansion method to construct many new, previously undiscovered exact solutions for the Boussinesq and modified Korteweg-de Vries equations. We also apply it to the shallow water long wave approximate equations. New solutions are deduced for this system of partial differential equations. / Finally, we develop and validate a numerical procedure for solving a class of initial boundary value problems for the improved Boussinesq equation. The finite element method with linear B-spline basis functions is used to discretize the equation in space and derive a second order system involving only ordinary derivatives. It is shown that the coefficient matrix for the second order term in this system is invertible. Consequently, for the first time, the initial boundary value problem can be reduced to an explicit initial value problem, which can be solved using many accurate numerical methods. Various examples are presented to validate this technique and demonstrate its capacity to simulate wave splitting, wave interaction and blow-up behavior.
|
49 |
Solução analítica das equações da cinética pontual e espacial da teoria de difusão de nêutrons pelas técnicas da GITT e decomposiçãoPetersen, Claudio Zen January 2011 (has links)
Neste trabalho, relatam-se soluções analíticas para as equações da cinética da teoria de difusão de nêutrons. Para a solução das equações da cinética pontual consideram-se seis grupos de precursores de nêutrons atrasados e assume-se reatividade variável como uma função arbitrária do tempo. A ideia principal consiste inicialmente na determinação da solução das equações da cinética pontual com reatividade constante apenas usando os resultados bem conhecidos para a solução de sistemas de equações diferenciais matriciais lineares de primeira ordem com entradas constantes. Com a aplicação do método de Decomposição, é possível transformar as equações da cinética pontual com reatividade variável com o tempo em um conjunto de problemas recursivos semelhantes às equações da cinética pontual com reatividade constante, o que pode ser resolvido diretamente com a técnica mencionada anteriormente. Para ilustração, apresentam-se simulações para as funções com reatividade constante, linear e senoidal, bem como comparações com resultados na literatura. Já com relação às equações da cinética espacial, consideram-se um e seis grupos de precursores de nêutrons atrasados, modelo multigrupo de energia, meio homogêneo e dimensões espaciais bi e tridimensionais. O formalismo do procedimento da solução é geral em relação ao número de grupos de energia, famílias de precursores de nêutrons atrasados e regiões com diferentes composições químicas. O fluxo rápido e térmico e as concentrações de nêutrons atrasados são expandidos em uma série de termos de autofunções que, pela aplicação da técnica da GITT, resulta em uma equação diferencial matricial de primeira ordem semelhante às equações de cinética pontual. Por esse motivo, a solução deste problema transformado segue o formalismo do método da Decomposição aplicado às equações da cinética pontual. Por fim, apresentam-se simulações numéricas e comparações com resultados disponíveis na literatura. / In this work we report analytical solutions for the neutron kinetics diffusion equations. For the solution of the point kinetics equations we consider six groups of delayed neutron precursors and assume that the reactivity is an arbitrary function of time. The main idea initially consists in the determination of the solution of the point kinetics equations with constant reactivity by just using the well-known results of the solution of systems of first-order linear ordinary differential equations in matrix form with constant matrix entries. Applying the decomposition method, we are able to transform the point kinetics equations with time dependent reactivity into a set of recursive problems similar to the point kinetics equations with constant reactivity, which can be directly solved by the above mentioned technique. For illustration, we also report simulations for constant, linear and sinusoidal reactivity time functions of time as well as comparisons with results published in the literature. As for the space kinetics equations we consider six groups of delayed neutron precursors, energy multigroup model, homogeneous media and two and three-dimensional geometries. The solution procedure formalism is general with respect to the number of energy groups, neutron precursor families and regions with different chemical compositions. The fast and thermal flux and the delayed neutron precursors concentrations are expanded in a series in terms of eigenfunctions that, upon insertion into the kinetics equation and upon taking moments, result in a first order linear differential matrix equation with source terms similar to the point kinetics equations. The solution of this transformed problem follows the formalism of the decomposition method applied to the point kinetics equations. We present numerical simulations and comparisons with available results in the literature.
|
50 |
Modelagem matemática do espalhamento do poluente mercúrio na águaConza, Adelaida Otazu January 2017 (has links)
O objetivo deste trabalho e a modelagem matem atica da propagaçãao do poluente mercúrio na agua. O modelo bidimensional consiste na drenagem da agua atrav es de um canal, onde o poluente (mercúrio) entra. O modelo consiste em um conjunto de equaçõoes diferenciais parciais: as equações para a conservação da massa, a quantidade de movimento, e a concentração das espécies, sujeitas a condições iniciais e de contorno apropriadas. Estas equações foram discretizadas pelo método de diferenças finitas centrais, gerando sistemas lineares que foram resolvidos pelo método de Gauss-Seidel e a convergência foi acelerada usando a técnica de sobre-relaxações SOR. A an alise da consistência e estabilidade da equação de concentração foi feita. Além disso, a solução analítica da equação de concentração, que e uma equação diferencial parcial bidimensional não homogênea com uma condição de contorno não homogênea, foi obtida com a transformada de Laplace. Os resultados obtidos a partir do modelo numérico e da solução analítica foram comparados e apresentam concordância razoável. / The goal of this work is the mathematical modeling of the spreading of the polluting mercury in the water. The two-dimensional model consists of water drainage through a canal, where the pollutant (mercury) enters. The model consists of a set of partial di erential equations: the equations for the conservation of the mass, the momentum, and the concentration of the species, subject to appropriate initial and boundary conditions. These equations were discretized by the method of central nite di erences, generating linear systems, which were solved by the Gauss-Seidel method and convergence was accelerated using the over-relaxation SOR technique. The analysis of the consistency and stability of the concentration equation was made. Furthermore, the analytical solution of the concentration equation, which is a two-dimensional non-homogeneous partial di erential equation with one nonhomogeneous contour condition, was obtained using Laplace transform. The results obtained from the numerical model and the analytical solution were compared and presented reasonable agreement.
|
Page generated in 0.0596 seconds