• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 102
  • 56
  • 7
  • 5
  • 3
  • 3
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 203
  • 203
  • 81
  • 79
  • 39
  • 29
  • 19
  • 18
  • 16
  • 16
  • 14
  • 13
  • 12
  • 12
  • 12
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

The effect of ascorbic acid supplementation on the absorption of iron from some vegetable staples

Sayers, Merlyn Herbert January 2015 (has links)
No description available.
2

A study of the chemical degradation of ascorbic acid in model systems

De Salegui, Miriam Nurnberg, January 1957 (has links)
Thesis (Ph. D.)--University of Wisconsin--Madison, 1957. / Typescript. Vita. eContent provider-neutral record in process. Description based on print version record. Includes bibliographical references.
3

Thermal transitions in wheat gluten

Hayta, Mehmet January 1999 (has links)
No description available.
4

Poly(aniline) composites as bioelectrochemical sensors

Wallace, Emma Naomi Kathleen January 1997 (has links)
No description available.
5

Vitamin C and milk a dissertation submitted in partial fulfillment ... Master of Science in Public Health ... /

Beckerman, Jacob M. January 1939 (has links)
Thesis (M.S.P.H.)--University of Michigan, 1939.
6

Vitamin C and milk a dissertation submitted in partial fulfillment ... Master of Science in Public Health ... /

Beckerman, Jacob M. January 1939 (has links)
Thesis (M.S.P.H.)--University of Michigan, 1939.
7

The effects of a dietary supplement of fresh oranges on the oral health of children

Dilley, Gary J. January 1973 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / The effects of additional citrus fruit in the diet on the periodontium have been a debated subject for some time. This study attempted to measure the effects of eating three additional oranges per day by 123 children ages six through twenty years and an equal number of controls over a 23-week period. To measure any changes that might take place, the following were evaluated clinically, and the decayed, missing and filled surfaces were also evaluated radiographically: 1. gingival status 2. plaque formation 3. D.M.F.S. and d.m.f.s. 4. white spots Results after the 23 week test period showed that the gingival scores increased significantly in both groups (increased inflammation). The plaque formation score also increased in both groups, but only the non-orange eaters' score increased significantly over their original score and over the orange eaters' score. The decayed, missing, and filled surfaces and white spots did not change significantly in either group. Therefore with this study sample over the 23-week test period, the additional oranges in the diet had limited measurable effect on the hard and soft tissues of the oral cavity.
8

The effects of sulfur-containing amino acids on ascorbic acid concentrations in mice.

January 2003 (has links)
by Lui Ka Man. / Thesis (M.Phil.)--Chinese University of Hong Kong, 2003. / Includes bibliographical references (leaves 143-166). / Abstracts in English and Chinese. / Acknowledgements --- p.i / List of Abbreviations --- p.ii / Abstract --- p.iv / 摘要 --- p.viii / List of Tables --- p.xi / List of Figures --- p.xii / Contents --- p.xvii / Chapter CHAPTER 1 --- INTRODUCTION / Chapter 1.1 --- Sulfur-Containing Amino Acids --- p.1 / Chapter 1.2 --- Metabolism of Sulfur-Containing Amino Acids --- p.3 / Chapter 1.2.1 --- The Metabolic Pathways --- p.3 / Chapter 1.2.2 --- Metabolic Regulation of Homocysteine --- p.7 / Chapter 1.3 --- Sulfur-Containing Amino acids and Health --- p.10 / Chapter 1.3.1 --- Sulfur-Containing Amino Acids and Renal Diseases --- p.11 / Chapter 1.3.2 --- Sulfur-Containing Amino Acids and the Nervous System --- p.13 / Chapter 1.3.3 --- Sulfur-Containing Amino Acids and Heart Diseases --- p.16 / Chapter 1.3.4 --- Sulfur-Containing Amino Acids and Liver Diseases --- p.20 / Chapter 1.4 --- Vitamin C (Ascorbic Acid) --- p.21 / Chapter 1.4.1 --- Biosynthesis 、 --- p.23 / Chapter 1.4.2 --- Vitamin C Transport System --- p.24 / Chapter 1.4.2.1 --- Uptake of Ascorbic Acid --- p.25 / Chapter 1.4.2.2 --- Uptake of Dehydroascorbic Acid --- p.26 / Chapter 1.5 --- Vitamin C and Health --- p.28 / Chapter 1.5.1 --- Vitamin C and Heart Diseases --- p.28 / Chapter 1.5.2 --- Vitamin C and Renal Diseases --- p.29 / Chapter 1.5.3 --- Vitamin C and Brain Diseases --- p.30 / Chapter 1.5.4 --- Vitamin C and Liver Diseases --- p.31 / Chapter 1.6 --- The Aims of Project --- p.33 / Chapter CHAPTER 2 --- MATERIALS AND METHODS / Chapter 2.1 --- Materials --- p.35 / Chapter 2.2 --- Preparation of Materials --- p.37 / Chapter 2.2.1 --- Mobile Phase for Ascorbic Acid Analysis --- p.37 / Chapter 2.2.2 --- Mobile Phase for Amino Acid Analysis --- p.37 / Chapter 2.2.3 --- Reagents for RNA Extraction and Reverse Transcription- Polymerase Chain Reaction (RT-PCR) --- p.38 / Chapter 2.2.4 --- Sense and Antisense Primers --- p.38 / Chapter 2.2.5 --- Reagents for Electrophoresis --- p.40 / Chapter 2.3 --- Animals --- p.40 / Chapter 2.4 --- Experimental Studies --- p.41 / Chapter 2.5 --- Methods --- p.41 / Chapter 2.5.1 --- Ascorbic Acid Analysis --- p.41 / Chapter 2.5.1.1 --- Extraction of Ascorbic Acid --- p.41 / Chapter 2.5.1.2 --- Chromatography --- p.42 / Chapter 2.5.2 --- Amino Acid Analysis --- p.45 / Chapter 2.5.2.1 --- Sample Preparation --- p.45 / Chapter 2.5.2.2 --- Chromatography --- p.45 / Chapter 2.5.3 --- Determination of RNA Expression by RT-PCR Analysis --- p.50 / Chapter 2.5.3.1 --- RNA Isolation --- p.50 / Chapter 2.5.3.2 --- Measurement of RNA Yield --- p.51 / Chapter 2.5.3.3 --- Reverse Transcription --- p.51 / Chapter 2.5.3.4 --- Polymerase Chain Reaction (PCR) --- p.52 / Chapter 2.5.3.5 --- Separation of PCR Products by Agarose Gel Electrophoresis --- p.52 / Chapter 2.5.3.6 --- Quantification of Band Density --- p.53 / Chapter 2.6 --- Statistical Analysis --- p.53 / Chapter CHAPTER 3 --- RESULTS / Chapter 3.1 --- Effects of Sulfur-Containing Amino Acids and Leucine on Ascorbic Acid Distributions in Mice --- p.54 / Chapter 3.1.1 --- Effects of Sulfur-Containing Amino Acids and Leucine on Ascorbic Acid Concentrations in the Plasma --- p.55 / Chapter 3.1.2 --- Effects of Sulfur-Containing Amino Acids and Leucine on Ascorbic Acid Concentrations in the Kidney --- p.57 / Chapter 3.1.3 --- Effects of Sulfur-Containing Amino Acids and Leucine on Ascorbic Acid Concentrations in the Liver --- p.59 / Chapter 3.1.4 --- Effects of Sulfur-Containing Amino Acids and Leucine on Ascorbic Acid Concentrations in the Brain --- p.61 / Chapter 3.1.5 --- Effects of Sulfur-Containing Amino Acids and Leucine on Ascorbic Acid Concentrations in the Heart --- p.63 / Chapter 3.1.6 --- Summary --- p.65 / Chapter 3.2 --- Time-Response --- p.66 / Chapter 3.2.1 --- Effects of Sulfur-Containing Amino Acids and Leucine Administration for Various Periods on Ascorbic Acid Concentrations in the Plasma --- p.67 / Chapter 3.2.2 --- Effects of Sulfur-Containing Amino Acids and Leucine Administration for Various Periods on Ascorbic Acid Concentrations in the Kidney --- p.69 / Chapter 3.2.3 --- Effects of Sulfur-Containing Amino Acids and Leucine Administration for Various Periods on Ascorbic Acid Concentrations in the Liver --- p.71 / Chapter 3.2.4 --- Effects of Sulfur-Containing Amino Acids and Leucine Administration for Various Periods on Ascorbic Acid Concentrations in the Brain --- p.73 / Chapter 3.2.5 --- Effects of Sulfur-Containing Amino Acids and Leucine Administration for Various Periods on Ascorbic Acid / Chapter 3.2.6 --- Summary --- p.77 / Chapter 3.3 --- Effects of Sulfur-Containing Amino Acids and Leucine on SVCT and GLUT3 Gene Expressions --- p.78 / Chapter 3.3.1 --- Effects of Sulfur-Containing Amino Acids and Leucine Administration on SVCT mRNA Expression in the Kidney --- p.79 / Chapter 3.3.2 --- Effects of Sulfur-Containing Amino Acids and Leucine Administration on SVCT mRNA Expression in the Liver --- p.89 / Chapter 3.3.3 --- Effects of Sulfur-Containing Amino Acids and Leucine Administration on SVCT and GLUT3 mRNA Expression in the Brain --- p.98 / Chapter 3.3.4 --- Effects of Sulfur-Containing Amino Acids and Leucine Administration on SVCT mRNA Expression in the Heart --- p.109 / Chapter 3.3.5 --- Summary --- p.115 / Chapter 3.4 --- Sulfur-Containing Amino Acids Concentrations in the Plasma --- p.117 / Chapter 3.4.1 --- Effects of Administration of Sulfur-Containing Amino Acids and Leucine on Methionine Concentrations in the Plasma --- p.117 / Chapter 3.4.2 --- Effects of Administration of Sulfur-Containing Amino Acids and Leucine on Cystine Concentrations in the Plasma --- p.119 / Chapter 3.4.3 --- Effects of Administration of Sulfur-Containing Amino Acids and Leucine on Taurine Concentrations in the Plasma --- p.119 / Chapter 3.4.4 --- Effects of Administration of Sulfur-Containing Amino Acids and Leucine on Leucine Concentrations in the Plasma --- p.122 / Chapter 3.4.5 --- Summary --- p.124 / Chapter CHAPTER 4 --- DISCUSSION AND CONCLUSIONS / Chapter 4.1 --- Effects of Sulfur-Containing Amino Acids and Leucine on Ascorbic Acid Concentrations in Mice --- p.126 / Chapter 4.2 --- Effects of Sulfur-Containing Amino Acids and Leucine on SVCT and GLUT3 Gene Expressions --- p.131 / Chapter 4.3 --- Sulfur-Containing Amino Acids Concentrations in the Plasma --- p.136 / Chapter 4.4 --- Conclusions --- p.140 / REFERENCES --- p.143
9

Analysis and interpretation of Iron studies and Vitamin C levels in paediatric patients with chronic renal failure

Lutz, Tracey Leigh 24 August 2010 (has links)
MMed (Paediatrics), Faculty of Health Sciences, University of the Witwatersrand / This prospective observational study analysed iron studies and vitamin C levels in patients with chronic kidney disease attending Johannesburg Hospital Paediatric Nephrology Clinic. The rationale behind this study was to determine the extent of iron deficiency among patients in chronic renal failure. Vitamin C deficiency is common among dialysis patients, it is easy to test for and easy to prevent. This study may assist in guiding future management with regards to vitamin C supplementation in patients with chronic renal insufficiency on dialysis. The study contained 45 patients of which 27 (60 %) were male and 18 (40 %) were female. The ages of the children varied from 2 years 1 month to 19 years and 7 months. The study included patients from all ethnic groups; 9 were Caucasian, 33 African, 2 Indian and 1 Coloured. Two male patients did not have Vitamin C levels analyzed. The patients were divided into 3 distinct groups; firstly those patients on haemodialysis (12 patients), those on peritoneal dialysis (22 patients) and those not yet dialysed (11 patients). In all patients who were not yet on dialysis the GFR ranged between 18.1 and 45 ml/min/1.73m2. There were no statistically significant differences between the three groups when the results of the iron studies were analysed. However, despite iron treatment 26.6 % of patients were iron deficient as indicated by their transferrin saturation which was less than 20 %. Vitamin C levels were also analysed in this study. Forty one percent of children in chronic renal failure were vitamin C deficient. There was no statistically significant variability among the three groups. Two patients (4.6%) were noted to be Vitamin C toxic. One of these patients was haemodialysed; the other was not yet on dialysis. Vitamin C deficiency in chronic renal insufficient patients on dialysis is easily correctable when identified. Vitamin C in specific well documented doses is safe to administer to this group of patients. It will also enhance the absorption of iron and thereby have an indirect effect on anaemia.
10

Assessment of Ascorbic Acid Effects on the Properties of Cell-Derived Tissue Rings

Hu, Jason Z 24 June 2010 (has links)
"We have developed a system to rapidly create three-dimensional tissue rings from aggregated cells. The ability to use cell-derived tissues to screen the effects of culture conditions on tissue mechanical function has not previously been reported. The first goal of this study was to evaluate the mechanical properties of cell-derived tissue rings in response to ascorbic acid, which has been shown to increase collagen content, resulting in increased mechanical strength. The second goal was to develop quantitative methods to evaluate the structure and composition of cell-derived tissue rings. Rat aortic smooth muscle cells (1.33x10^6 cells/ring) were seeded in agarose wells with 4 mm post diameters in DMEM supplemented with 10% FBS and ascorbic acid (0, 50, 150 ug/ml). After 7 days, the average thickness of the constructs reached 0.72 +/- 0.03 mm with no statistical differences between groups. Ultimate tensile strength values were higher in the ascorbic acid-treated groups compared to untreated controls. However, there was no significant difference between tissue rings treated with 50 and 150 ug/ml ascorbic acid. Biochemical analysis showed that ascorbic acid did not significantly affect total protein, collagen content or cell number. Image analysis of polarized light micrographs suggested that collagen fibril coverage increased in response to ascorbic acid treatment, although the differences between groups were insignificant. In addition to ascorbic acid treatment, we also subjected tissue rings to DTPA treatment to prolong ascorbic acid availability in culture medium, which resulted in weak and necrotic tissue rings. Reduced serum was also investigated in order to decrease cell proliferation, which resulted in decreased tissue thickness and increased mechanical strength. Overall, we successfully demonstrated that the mechanical properties of the tissue rings could be altered by ascorbic acid treatment, and developed a series of quantitative methods to measure tissue mechanics, composition and organization. The results of this study further support the potential to use the tissue ring system as a high throughput screening method for studying the functional properties of three-dimensional engineered tissues."

Page generated in 0.0278 seconds