• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 33
  • 15
  • 8
  • 7
  • 6
  • 3
  • 1
  • Tagged with
  • 92
  • 92
  • 92
  • 21
  • 15
  • 12
  • 11
  • 10
  • 9
  • 9
  • 9
  • 9
  • 8
  • 8
  • 8
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Mechanical Characterisation of Coatings and Composites-Depth-Sensing Indentation and Finite Element Modelling

Xu, Zhi-Hui January 2004 (has links)
<p>In the past two decades depth-sensing indentation has becomea widely used technique to measure the mechanical properties ofmaterials. This technique is particularly suitable for thecharacterisation of materials at sub-micro or nano scale thoughthere is a tendency to extend its application to the micro ormacro scale. The load-penetration depth curve of depth-sensingindentation is a characteristic of a material and can be usedfor analysing various mechanical properties in addition tohardness. This thesis deals with the mechanicalcharacterisation of bulk materials, thin films and coatings,gradient materials, and composites using depth-sensingindentation. Finite element method has been resorted to as atool to understand the indentation behaviour of materials.</p><p>The piling-up or sinking-in behaviour of materials plays animportant role in the accurate determination of materialsproperties using depth-sensing indentation. Finite elementsimulations show that the piling-up or sinking-in behaviour isdetermined by the material parameters, namely<i>E/σ</i><i>y</i>ratio and strain hardening exponent orexperimental parameter<i>h</i><i>e</i><i>/h</i><i>max</i>ratio, and the contact friction. Anempirical model has been proposed to relate the contact area ofindentation to the<i>E/σ</i><i>y</i>ratio and the<i>h</i><i>e</i><i>/h</i><i>max</i>ratio and used to predict thepiling-up orsinking-in of materials. The existence of friction is found toenhance the sinking-in tendency of materials. A generalrelationship between the hardness and the indentationrepresentative stress valid for both soft and hard materialshas been obtained. A possible method to estimate the plasticproperties of bulk materials has been suggested.</p><p>Measuring the coating-only properties requires theindentation to be done within a critical penetration depthbeyond which substrate effect comes in. The ratio of thecritical penetration depth to the coating thickness determinedby nanoindentation is independent of coating thickness andabout 0.2 for gold / nickel, 0.4 for aluminium / BK7 glass, and0.2 for diamond-like-carbon / M2 steel and alumina / nickel.Finite element simulations show that this ratio is dependent onthe combination of the coating and the substrate and moresensitive to differences in the elastic properties than in theplastic properties of the coating/substrate system. Thedeformation behaviour of coatings, such as, piling-up of thesoft coatings and cracking of the hard coatings, has also beeninvestigated using atomic force microscope.</p><p>The constraint factors, 2.24 for WC phase and 2.7 for WC-Cocemented carbides, are determined through nanoindentation andfinite element simulations. A modified hardness model of WC-Cocemented carbides has been proposed, which gives a betterestimation than the Lee and Gurland hardness model. Finiteelement method has also been used to investigate theindentation behaviour of WC-Co gradient coatings.</p><p><b>Keywords:</b>depth-sensing indentation, nanoindentation,finite element method, atomic force microscope, mechanicalproperties, hardness, deformation, dislocations, cracks,piling-up, sinking-in, indentation size effect, thin coatings,composite, gradient materials, WC-Co, diamond-like-carbon,alumina, gold, aluminium, nickel, BK7 glass, M2 steel.</p>
12

Caos e controle de microviga em balanço de um microscópio de força atômica, operando em modo intermitente, na ressonância

Rodrigues, Kleber dos Santos [UNESP] 10 November 2011 (has links) (PDF)
Made available in DSpace on 2014-06-11T19:28:33Z (GMT). No. of bitstreams: 0 Previous issue date: 2011-11-10Bitstream added on 2014-06-13T19:58:06Z : No. of bitstreams: 1 rodrigues_ks_me_bauru.pdf: 3671952 bytes, checksum: 95922ebe5feb1ccd5d65c466e158d7a8 (MD5) / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) / Universidade Estadual Paulista (UNESP) / Desde 1986, quando Binnig et al (1986) criaram o microscópio de força atômica (AFM), esse aparelho se tornou um dos mais importantes microscópios de varredura (SPM), sendo usado para análise de DNA, nanotubos, etc. (Rützel et al, 2006). O AFM tem como componente principal uma microviga, com uma ponteira em uma das extremidades, que vibra próximo de sua frequencia de ressonância para mandar sinais a um fotodetector que traduz esse sinal e gera as imagens da superfície da amostra. O modo de operação tapping é o mais usado, e o comportamento caótico é muito comum nesse modo de operação, por esse motivo, AFM se tornou um assunto muito importante no mundo científico. Nesse trabalho, a microviga é modelada com o uso das equações de Bernoulli, as interações entre ela e a amostra são modeladas usando o potencial de Lennard Jones. Simulações numéricas detectam movimento caótico no sistema, a necessidade de estabilizá-lo nos leva a usar os seguintes métodos: Método do Balanço Harmônico, sincronização de Sistemas Não Lineares, Método das Equações de Estado Dependentes de Riccati (SDRE), Método de Realimentação de Sinal Atrasado. Por fim, a aplicação dos métodos se mostra eficiente, com pequeno erro e fácil implementação / Since 1986, when Binnig et al (1986) created the atomic force microscope (AFM), this unit became one of the most important scanning probe microscopes (SPM) being used for DNA analysis, nano tubes, etc. (Rutzel et al, 2006). The AFM has as a main component, a micro cantilever, with a tip at its free end, which vibrates near its resonance frequency to send signals to a photo detector that translates the signal and generates images of the sample surface. The tapping mod of operation is the most widely used and chaotic behavior is very common in this mode, therefore, AFM has become a very interesting subject in the scientific world. In this work, the micro cantilever is modeled using Bernoulli's equation and the interactions between the tip and the sample are modeled using the Lennard Jones potential. Numerical simulations detect chaotic motion in the system and the need to stabilize it leads us to use the following methods, Harmonic Balance Method; Synchronization of Nonlinear Systems; the State Dependent Riccati Equation control method (SDRE); the Method of Feedback Delay. Finally, the application of the methods proved to be effective, with small error and easy implementation
13

Dielectric and mechanical properties of polymers at macro and nanoscale / Propriétés dielectriques et mecaniques des polymeres aux échelle macroscopiques et nanoscopique

Riedel, Clément 14 October 2010 (has links)
Le but de cette thèse était tout d'abord de comprendre les théories physiques qui décrivent la dynamique des polymères à l'échelle macroscopique. Le modèle de Rouse et la théorie d'enchevêtrement de De Gennes décrivent la dynamique des polymères non enchevêtrés et enchevêtrés, respectivement. Nous avons étudiés les différentes transitions entre ces deux régimes en utilisant deux techniques expérimentales: Broadband Dielectric Spectroscopy (BDS) et rhéologie. Les effets d'enchevêtrement sur les spectres diélectriques ont été discutés. Un test complet du modèle de Rouse à été effectué sur en comparant les prédictions de ce modèle pour la dépendance en fréquence de la permittivité diélectrique et du module de cisaillement aux données expérimentales. Ensuite nous avons développés des méthodes bas"s sur la microscopie à force électrostatique afin d'étudier les propriétés diélectriques locales. En utilisant la simulation numérique de la Méthode des Charges Equivalentes la constante diélectrique a été quantifiée à partir de la mesure du gradient de force crée par un potentiel statique entre une pointe et un diélectrique. Cette méthode permet d'imager la constante diélectrique avec une résolution spatial de 40 nm. Le retard de phase de la composante en 2ω de la force ou du gradient de force crée par un voltage alternatif est relié aux pertes diélectriques. En mesurant cette quantité nous avons montré que la dynamique était plus rapide proche d'une interface libre et nous avons développé un mode d'imagerie des pertes diélectriques. Cette méthode simple pourrait être appliqué en biologie ou matière molle en générale afin d'étudier des variations locales de constantes diélectriques. / The aim of this thesis was first to understand the physical theories that describe the dynamics of linear polymers at the macroscopic scale. Rouse and the reptational tube theory describe the large scale dynamics of unentangled and entangled polymers respectively. Using Broadband Dielectric Spectroscopy (BDS) and rheology we have studied the different transition between these two regimes. Effects of entanglement on dielectric spectra will be discussed (Rheologica Acta. 49(5):507-512). Avoiding the segmental relaxation contribution and introducing a distribution in the molecular weight we have been able to perform a comparison of the Rouse model with experiment dielectric and rheological data (Macromolecules 42(21): 8492-8499) Then we have developed EFM-based methods in order to study the local dynamics. Using the numerical simulation of the Equivalent Charge Method, the value of the static dielectric permittivity has been quantified from the measurement of the force gradient created by a VDC potential between a tip and a grounded dielectric (Journal of Applied Physics 106(2):024315). This method allows a quantitative mapping of dielectric properties with a 40 nm spatial resolution and is therefore suitable for the study of nano-defined domains (Physical Review E 81(1): 010801). The electrical phase lags in the 2ω components of the force or force gradient created by VAC voltage, ΔΦ2ω, are related with dielectric losses. Measuring the frequency dependence of ΔΦ2ω Crieder et al (Applied Physics Letters 91(1):013102) have shown that the dynamics at the near free surface of polymer films is faster than the one in bulk. We have used this method in order to visualize the activation of the segmental relaxation with temperature and frequency (Applied Physics Letters 96(21): 213110). All this measurements can be achieved using standard Atomic Force Microscope (and a lock-in) for VAC measurements.
14

Commercial chemical vapor-deposited hexagonal boron nitride: how far is it from mechanically exfoliated-like quality?

Yuan, Yue 10 November 2022 (has links)
Two-dimensional (2D) layered hexagonal boron nitride (h-BN) has become a very popular material in nanoelectronics in recent years because of its extraordinary chemical stability and thermal conductivity [1]. Recently, h-BN is also commonly used as a dielectric material [2], and research in this area is still in its early stages. The commonly used methods for fabricating h-BN include mechanical exfoliation and chemical vapor deposition (CVD). CVD is a recognized industry-compatible method for producing large-area h-BN. However, studies have shown that multilayer h-BN grown by CVD is polycrystalline and contains multiple local defects [3]. These defects and inhomogeneity cannot be avoided and lead to small amounts of atom-wide amorphous regions that have weak dielectric strength [3]. Although the general characteristics of h-BN prepared by these two fabrication methods can be learned from different works in the literature, it is difficult to study the quality of h-BN without systematically comparing the differences between the two growth methods under the same experimental conditions and with large number of samples. This also makes it difficult for researchers to choose the best-quality h-BN. In this work, the morphological characteristics and electrical properties of mechanically exfoliated h-BN and CVD-grown h-BN from different sources have been compared under different conditions. Commercially available h-BN flakes mechanically exfoliated from NIMS h-BN bulk crystal show no leakage current at electrical fields up to 25.9 MV/cm, and above this applied electrical force, the size of the conductive spots is extremely small (1.99 ± 1.81 nm2). On the contrary, “monolayer” CVD-grown h-BN samples from Graphene Supermarket were shown to be amorphous in ~20% of their area, which makes them appear discontinuous from an electrical point of view, plus they contain large thickness fluctuations up to 6 layers. Moreover, in nanoelectronic measurements collected with a conductive atomic force microscope (CAFM) working in vacuum, mechanically exfoliated h-BN showed better electrical homogeneity and presented later dielectric breakdown compared to the h-BN samples fabricated by the CVD method.
15

Hydrophobic Forces in Flotation

Pazhianur, Rajesh R. 26 June 1999 (has links)
An atomic force microscope (AFM) has been used to conduct force measurements to better understand the role of hydrophobic forces in flotation. The force measurements were conducted between a flat mineral substrate and a hydrophobic glass sphere in aqueous solutions. It is assumed that the hydrophobic glass sphere may simulate the behavior of air bubbles during flotation. The results may provide information relevant to the bubble-particle interactions occurring during flotation. The glass sphere was hydrophobized by octadecyltrichlorosilane so that its water contact angle was 109 degrees. The mineral systems studied include covellite (CuS), sphalerite (ZnS) and hornblende (Ca₂(Mg, Fe)₅(Si₈O₂₂)(OH,F)₂). The collector used for all the mineral systems studied was potassium ethyl xanthate (KEX). For the covellite-xanthate system, a biopotentiostat was used in conjunction with the AFM to control the potential of the mineral surface during force measurements. This was necessary since the adsorption of xanthate is strongly dependent on the electrochemical potential (Eₕ) across the solid/liquid interface. The results show the presence of strong hydrophobic forces not accounted for by the DLVO (named after Derjaguin, Landau, Verwey and Overbeek) theory. Furthermore, the potential at which the strongest hydrophobic force was measured corresponds to the potential where the flotation recovery of covellite reaches a maximum, indicating a close relationship between the two. Direct force measurements were also conducted to study the mechanism of copper-activation of sphalerite. The force measurements conducted with unactivated sphalerite in 10⁻³ M KEX solutions did not show the presence of hydrophobic force while the results obtained with copper-activated sphalerite at pH 9.2 and 4.6 showed strong hydrophobic forces. However, at pH 6.8, no hydrophobic forces were observed, which explains why the flotation of sphalerite is depressed in the neutral pH regime. Direct force measurements were also conducted using hornblende in xanthate solutions to study the mechanism of inadvertent activation and flotation of rock minerals. The results show the presence of long-range hydrophobic forces when hornblende was activated by heavy metal cations such as Cu²⁺ and Ni²⁺ ions. The strong hydrophobic forces were observed at pHs above the precipitation pH of the activating cation. These results were confirmed by the XPS analysis of the activated hornblende samples. Force measurements were conducted between silanated silica surfaces to explore the relationship between hydrophobicity, advancing contact angle (CA), and the magnitude (K) of hydrophobic force. In general, K increases as Contact Angle increases and does so abruptly at Contact Angle=90°. At the same time, the acid-base component of the surface free energy decreases with increasing CA and K. At CA>90°, GammaS<sup>AB</sup> approaches zero. Based on the results obtained in the present work a mathematical model for the origin of the hydrophobic force has been developed. It is based on the premise that hydrophobic force originates from the attraction between large dipoles on two opposing surfaces. The model has been used successfully to fit the measured hydrophobic forces using dipole moment as the only adjustable parameter. However, the hydrophobic forces measured at CA>90° cannot be fitted to the model, indicating that there may be an additional mechanism, possibly cavitation, contributing to the appearance of the long-range hydrophobic force. / Ph. D.
16

Mechanical Characterization of Patterned Silver Columnar Nanorods with the Atomic Force Microscope.

Kenny, Sean 30 April 2012 (has links)
Patterned silver (Ag) columnar nanorods were prepared by the glancing angle physical vapor deposition method. The Ag columnar nanorods were grown on a Si (100) substrate patterned with posts in a square “lattice” of length 1 μm. An electron beam source was used as the evaporation method, creating the deposition flux which was oriented 85˚ from the substrate normal. A Dimension Icon with NanoScope V controller atomic force microscope was used to measure the spring constant in 10 nm increments along the long axis of five 670 nm long Ag nanorod specimens. The simple beam bending model was used to analyze the data. Unexpected behavior of the spring constant data was observed which prevented a conclusive physically realistic value of the Young’s modulus to be calculated.
17

Rapid preformulation screening of drug candidates for dry powder inhaler preparation

Harris, Haggis January 2008 (has links)
Candidate active pharmaceutical ingredients (APIs) are routinely tested to determine such parameters as physical stability, chemical stability, and bioavailability. Preformulation analysis of APIs does not currently attemept to determine whether they will perform to an acceptable level once they have been formulated. In practice, the APIs are subjected to extensive in vitro testing of their performance in a formulation, combined with optimisation of the formulation. This formulation testing is both time-consuming and expensive. In the field of pulmonary drug delivery from dry powder inhalers (DPIs), the API has to be aerosolized effectively in order to penetrate the lunfs and reach its deposition target. In a conventional ternary DPI fromulation, the API is combined with carrier lactose and fine lactose particles. The inter-particle forces between these three components and the bulk properties of the formulation determine the structure of the formulation and the aerolization performance of the API. In this study, physicochemical properties of salbutamol base and several of its salts were investigated both quantitatively and qualitatively. The in vitro deposition characteristics of the formulated APIs were also determined. The relationship between these parameters and the deposition was analysed to establish if a rapid preformulation screening technique could be applied to the APIs with respect to predicting the deposition performance of the formulated API. A clear relationship between the deposition of the unformulated API and the formulated API was observed that could be exploited as a screening technique.
18

Detection of polysaccharides on a bacterial cell surface using Atomic Force Microscopy

Arora, Bhupinder S 26 August 2003 (has links)
"Bacteria during the course of their life undergo a lot of developments on their surface. The changes that occur inside a cell result in the production of a variety of biopolymers on the cell surface. These polysaccharides have been found to play a major role in deciding the adhesive or repulsive nature of a bacterial cell. Based on the application the adhesive nature of a cell sometimes needs to be manipulated such that bacteria are required to have higher adhesions for bioremediation applications and in the case of bioreactors bacteria must not stick to walls to avoid fouling. In order to control adhesions of a cell to a variety of substrates, knowledge of the polysaccharides present on its surface is needed. Therefore the goal of the present study is to detect the sugars present on the surface of Pseudomonas putida KT2442 using Atomic force microscopy and to relate properties of the polysaccharides to bacterial adhesion. Previous experiments suggested that cellulose and other sugars were produced by Pseudomonas putida KT2442. Thus the cells were grown to late exponential phase and treated with cellulase to degrade any cellulose, if present, on the surface of the cells. Control experiments were done on untreated cells and cells that were not treated with cellulase but were centrifuged, since centrifugation is a part of the cellulase treatment and may also affect the bacterial surface. An appropriate (Steric) fitting model for the atomic force microscope (AFM) approach curves was applied to calculate the height and density of the polymer brush layer present on the cell surface. There was a decrease in the density of the polymer brush and increase in the height of the brush upon treatment with cellulase. Centrifugation alone did not affect the approach curves. From looking at the retraction curves it verified the results got from the approach curves and indicated stretching out of the polymer brush to greater distances after the treatment with cellulase. Another batch of cells was treated with dextranase to check for the presence of dextran on the cell surface. Dextranase treated cells behaved identical to the control cells, suggesting that dextran is not one of the polysaccharides present on the bacterial surface. No change was observed in retraction curves data for dextranase treated and untreated cells."
19

[en] INFLUENCE OF CAPILLARY CONDENSATION IN NANOSCALE FRICTION / [pt] INFLUÊNCIA DA CONDENSAÇÃO CAPILAR NA FRICÇÃO EM NANO ESCALA

ROBERT RONALD MAGUINA ZAMORA 27 June 2005 (has links)
[pt] Nesta tese, apresentamos um procedimento utilizado para a calibração do fotodetector e dos cantileveres utilizados em nosso AFM para a medida de força lateral. Desenvolvemos um código em Matlab para o controle do microscópio que permitiu a realização do estudo da influência da força normal na fricção. Também foi desenvolvido um segundo código em Matlab para a medida automatizada da adesão. Apresentamos e discutimos a influência da energia livre superficial na fricção e adesão de várias superfícies. Neste trabalho um estudo da influência da condensação capilar na forca lateral foi estudado para superfícies hidrofílicas, e hidrofóbicas. Encontramos que as nano asperezas podem realizar contatos singulares descritos pelo modelo de Hertz ou múltiplos contatos de acordo com o modelo de Greenwood. O tipo de contato entre as nano asperezas pode ser controlado através da hidrofobicidade e da umidade relativa no ambiente de medida. É verificado que os meniscos formados entre ponta e superfície influenciam a força lateral, através do aumento da força normal e também através da energia gasta pela ponta para arrastar ou deformar o capilar durante seu deslocamento sobre a superfície. O efeito da cinética de condensação capilar da água sobre a fricção foi também estudado. É mostrado que a molhabilidade é determinante para a definição dos mecanismos da dissipação de energia entre as nanoasperezas. Apresentamos também a influência da hidrofobicidade superficial no coeficiente de atrito. A correlação observada entre o ângulo de contato e o coeficiente de atrito reforça a importância da cinética da condensação capilar nos processos de fricção que ocorre na escala de nanômetros. / [en] In this work, the procedures developed to the calibration of the AFM photodetector and cantilevers for lateral force measurements in our AFM is presented. A Matlab code that controls the microscope allows the study of the influence of the normal force on the lateral one. A second Matlab code was developed in order to study the adhesion forces in an automated way. We present and discuss the influence of the surface free energy on the friction and adhesion forces. In this work, the lateral forces were measured at hydrophilic and hydrophobic surfaces. It was observed that the nano asperities may form single asperity contacts described by the Hertz model as well as multi-asperity type of contacts described by the Greenwood model. The nanoasperity contact may be controlled by the wettability and ambient relative humidity. It is seen that the capillar formed between the tip and the surface influences the tip-surface normal force and the friction forces due to the dissipation of energy caused by the drag or brake of the capillar meniscous. The effect of capillary condensation kinetics was studied as well. It is shown that the surface wettability is determinant to the energy dissipation mechanism in nanoscale. The influence of the surface wettability on the friction coefficient is presented. The observed correlation between the friction coefficient and contact angle enhances the influence of the surface wettability and its kinetics in the friction forces at nanoscale.
20

Imaging at the Nano-scale: State of the Art and Advanced Techniques

Aumond, Bernardo D., El Rifai, Osamah M., Youcef-Toumi, Kamal 01 1900 (has links)
Surface characteristics such as topography and critical dimensions serve as important indicators of product quality and manufacturing process performance especially at the micrometer and the nanometer scales. This paper first reviews different technologies used for obtaining high precision 3-D images of surfaces, along with some selected applications. Atomic force microscopy (AFM) is one of such methods. These images are commonly distorted by convolution effects, which become more prominent when the sample surface contains high aspect ratio features. In addition, data artifacts can result from poor dynamic response of the instrument used. In order to achieve reliable data at high throughput, dynamic interactions between the instrument's components need to be well understood and controlled, and novel image deconvolution schemes need to be developed. Our work aims at mitigating these distortions and achieving reliable data to recover metrology soundness. A summary of our findings will be presented. / Singapore-MIT Alliance (SMA)

Page generated in 0.0453 seconds