• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 121
  • 44
  • 18
  • 16
  • 11
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 2
  • 2
  • Tagged with
  • 285
  • 68
  • 52
  • 35
  • 27
  • 22
  • 18
  • 18
  • 16
  • 16
  • 15
  • 15
  • 14
  • 14
  • 14
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
141

A structural and stratigraphic interpretation of the Gaddes Basalt in the Oak Wash drainage of the Verde Mining District, central Arizona

Schnell, Carl Walter, 1959- January 1990 (has links)
No description available.
142

THE EXPERIMENTAL PARTITIONING BEHAVIOR OF TUNGSTEN AND PHOSPHORUS: IMPLICATIONS FOR THE COMPOSITION AND FORMATION OF THE EARTH, MOON AND EUCRITE PARENT BODY.

NEWSOM, HORTON ELWOOD. January 1982 (has links)
The solid-metal/silicate-melt partition coefficient for W has been determined experimentally for the temperature and oxygen fugacity conditions at which eucritic basalts formed. The partition coefficient for W is 25 ± 5 at 1190°C and an oxygen fugacity of 10⁻¹³∙⁴. The solid-metal/silicate-melt partition coefficient for P, D(P), has been determined experimentally at 1190°C and 1300°C. The dependence of the partition coefficient on oxygen fugacity is consistent with a valence state of 5 for P in the silicate melt. The experimental partition coefficients are given by: (1) log D(P) = -1.21 log fO₂ -15.95 at 1190°C (2) log D(P) = -1.53 log fO₂ -17.73 at 1300°C The partition coefficients may be used to interpret the depletion of W/La and P/La ratios in the Earth, Moon, and eucrites relative to Cl chondrites. The depletion of the W/La ratios in the eucrites may be explained by partitioning of W into 2% to 10% solid metal assuming equilibration and separation of the metal from the silicates at low degrees of partial melting of the silicates. The depletion of P/La ratios requires an additional 5% to 25% sulfur-bearing metallic liquid. The depletion of both P/La and W/La ratios in the Moon can be explained by partitioning of P and W into liquid metal during formation of a small lunar core by metal-silicate separation at low degrees of partial melting of the silicates. The W/La ratios in the Earth and Moon are virtually indistinguishable, while P/La ratios differ by a factor of two. The concentrations of FeO also appear to be different. These observations are difficult to reconcile with the hypothesis of a terrestrial origin of the Moon following formation of the Earth's core, but are consistent with an independent formation of the Earth and Moon. In contrast to the Moon and eucrites, the depletion of P/La and W/La ratios in the Earth cannot be explained by an internally consistent model involving equilibrium between metal and silicate at low pressures.
143

Investigation of the Addition of Basalt Fibres into Cement

Palme, Jahi 01 May 2014 (has links)
Mechanical properties of concrete are most commonly determined using destructive tests including: compression, flexure, and fracture notch specimen tests. However, nondestructive tests exist for evaluating the properties of concrete such as ultrasonic pulse velocity and impact echo tests. One of major issues with concrete (which has cement as its prime ingredient) is that unlike steel it is quasi-brittle material. It tends to want to crack when tensile stresses develop. Fibres have been added to concrete for many years to reduce the amount of and size of cracks cause by temperature changes or shrinkage. In more recent years, significant research has been carried out into the effect of the addition of basalt fibres to cement has on its mechanical strength. As well, developing concrete that is more durable, flexible, stronger, and less permeable than traditional concrete has been explored. It has become important to test and verify improvements that are made to the cement by basalt fibres as well as testing the general strength of concrete to stand up to constant pressure at varied strengths.
144

Mid-Miocene magmatism in the Owyhee Mountains, ID: origin and petrogenesis of volcanic rocks in the Silver City district

Hasten, Zachary Eugene Levi January 1900 (has links)
Master of Science / Department of Geology / Matthew E. Brueseke / Previous studies of the northern Great Basin have indicated that mid-Miocene epithermal gold and silver ore deposits distributed regionally are temporally related to the magmatic activity associated with the onset of widespread extension and the Yellowstone hotspot (Saunders and Crowe, 1996; Kamenov et al., 2007). This study is focused on the volcanic rocks and ore deposits from the Silver City district (SCD), ID to address the petrogenesis and magmatic evolution that was influential in forming local precious metal deposits. The goal is to understand the tectonomagmatic conditions that contributed to the petrogenesis of the volcanic suite in the Silver City district, which can be used to provide details on the relationship between coeval mid- Miocene magmatism and mineralization across the northern Great Basin and Oregon Plateau. In order to better constrain the magmatic evolution of the SCD and potential sources of the precious metals, we have undertaken detailed sampling of local crust and mid-Miocene volcanic units to constrain their physical, geochemical, isotopic, and geochronological characteristics, as well as provide constraints on the petrogenesis of the mid-Miocene volcanic package. Prior studies of the local volcanism have yielded K-Ar and [superscript]40Ar/[superscript]39Ar ages of ~16.6 to 14 Ma (Bonnichsen, 1983), while others have dated adularia from one SCD mineral vein and obtained [superscript]40Ar/[superscript]39Ar ages of between 15.6 and 16.3 Ma (Hames et al., 2009; and Aseto et al., 2011). Field observations are consistent with earlier work (Lindgren, 1900; Asher, 1968; Pansze, 1975; Halsor et al., 1988; Bonnichsen and Godchaux, 2006; Camp and Ross, 2009) and reveal a sequence of basalt consisting of regionally prevalent Steens Basalt that pre-dated precious metal mineralization. Some of the basalt appears to have been erupted locally, based on the presence of mafic dikes and thick pyroclastic deposits similar to other regional mid-Miocene magmatic systems. Stratigraphically overlying this lower basalt suite is a complex package of rhyolite flows and domes, thin silicic pyroclastic units, additional basaltic lava flows, intermediate lava flows, and mafic/silicic shallow intrusives. Geochemical analysis indicates that the basaltic and basaltic andesite lava flows are locally erupted flows of Steens Basalt while the intermediate and silicic volcanism in SCD can be classified into nine distinct units including two andesites, one dacite, four rhyolites and two rhyolite tuffaceous units. Geochemical modeling suggest that the intermediate and silicic magmas were formed by a combination of open system processes, including low pressure partial melting and assimilation of mid to upper crustal granitoid basement rock, and magma mixing between silicic and basaltic endmembers. The formation of silicic volcanism in the SCD is similar to other regional mid-Miocene silicic volcanic systems (e.g. Santa Rosa-Calico volcanic field and Jarbidge Rhyolite). Based on new [superscript]40Ar/[superscript]39Ar geochronology of both volcanic units and epithermally emplaced mineralization, SCD volcanism appears to have erupted over a relatively short amount of time that overlaps with local epithermal Au-Ag mineralization.
145

Evolução do vulcanismo histórico de 1580 A.D. da Ilha de São Jorge, Arquipélago dos Açores

Rossetti, Marcos de Magalhães May January 2017 (has links)
A erupção histórica de 1580 A.D. ocorreu ao sudoeste da Ilha de São Jorge, Açores recobrindo uma área total de 4 km². Este trabalho teve como objetivo caracterizar as diferentes morfologias de lava de 1580 A.D, juntamente com a definição de padrões petrográficos e geoquímicos. A erupção gerou quatro flow fields: Ribeira do Almeida, Queimada, Ribeira do Nabo I e Ribeira do Nabo II. A descrição detalhada das lavas permitiu identificar spiny, sheet, e slabby pahoehoe e derrames do tipo ‘a´ā. Próximo aos cones, derrames do tipo ‘a´ā são descritos. Com a constante erupção, estas lavas fluem em direção a costa formando deltas de lava ao entrar em contato com a água. Estes deltas geram um relevo sub-horizontal favorecendo a colocação de derrames do tipo sheet pahoehoe. A contínua alimentação interna favorece o espessamento dos derrames, podendo gerar o rompimento da superfície formando derrames slabby pahoehoe. Os estágios finais da erupção são marcados por derrames do tipo ‘a´ā canalizados lateralmente e sobre os derrames do tipo sheet pahoehoe. A variação na superfície dos derrames é controlada pelas taxas de efusão e pela topografia. Petrograficamente, todas as lavas da erupção de 1580 A.D. são olivina basaltos. Os dados geoquímicos indicam uma afinidade magmática alcalina com os termos menos diferenciados localizados na região de Ponta Queimada. Isto pode ser explicado por uma constante recarga de magma mais primitivo na câmara magmática. Os padrões de ETR normalizados sugerem que os basaltos estudados foram gerados a partir de um baixo grau de fusão de uma fonte profunda e enriquecida do tipo OIB. O estudo dos aspectos físicos dos derrames de 1580 juntamente com a petrografia e geoquímica permitiram compreender a história geológica deste evento. / The historic eruption of 1580 A.D. occurred in the southwestern of São Jorge Island, in the central Azores covering a total area of 4 km². This work provides a characterization of the distribution and morphology of the 1580 A.D. lava flows, integrated to petrography and geochemistry. The eruption formed four distinct flows fields: Ribeira do Almeida, Queimada, Ribeira do Nabo I and Ribeira do Nabo II. Detailed geological analysis allowed the identification of spiny, sheet and sllaby pahoehoe and ‘a´ā lava morphotypes. Near the vent, the flow fields are characterized by channelized ‘a´ā flows. With continuous eruption, these lavas flowed downwards forming fan-shaped lava deltas when entering the sea. Sheet pahoehoe flows overlay the ‘a´ā lavas and with continuous inflation the surface of the flows breaks generating slabby pahoehoe surface. The gradual increase in surface fragmentation form rubbly surfaces. In the late stages of the eruption channelized ‘a´ā flows were emplaced, depositing laterally and over the sheet pahoehoe flows. The variations in the lava surface are controlled by the effusion rates and the topography. Petrographically, all lava flows are olivine basalts. The chemistry of the basalts indicate an alkaline nature for the 1580 volcanism. The less-evolved compositions are found in Ribeira do Almeida and this fact can be related to continuous recharge of the magma chamber with more primitive melts. Normalized REE profiles show that the basalts were generated by low volumes of melt of an enriched OIB source. The study of the physical aspects of 1580 lava flows with petrography and geochemistry allowed understand the geologic history of this event.
146

Ascension et dégazage des magmas basaltiques : approche expérimentale / Basaltic magma ascent and degassing : experimental approach

Le Gall, Nolwenn 06 November 2015 (has links)
Afin de parvenir à une meilleure compréhension de la dynamique d’ascension et d’éruption des magmas basaltiques, nous avons réalisé des expériences de décompression à haute pression (200–25 MPa) et haute température (1200°C) spécifiquement orientées pour documenter la nucléation des bulles de gaz ; ce processus, qui constitue la première étape du dégazage magmatique, conditionne l’évolution de la phase gazeuse (force motrice des éruptions explosives) dans le conduit volcanique. Quatre principaux ensembles d’expériences ont été menés afin de mieux comprendre le rôle des volatils majeurs (H2O, CO2, S), ainsi que les effets de la vitesse d’ascension et de la présence de cristaux sur la cinétique de vésiculation (nucléation, croissance, coalescence) des bulles dans les magmas basaltiques. L’objectif est de comprendre les mécanismes qui contrôlent les caractéristiques texturales (nombre, taille, forme des bulles) et chimiques (teneur en volatils dissous, composition des gaz) des produits naturels et de les approcher expérimentalement. Dans ce sens, les verres expérimentaux ont été analysés avant et après décompression sur le plan textural (microtomographie par rayons X, MEB) et chimique (FTIR, microsonde électronique). Nos résultats démontrent une forte influence du CO2 sur les processus ainsi que sur le mode (équilibre vs. déséquilibre) de dégazage des magmas basaltiques, en lien avec des différences de solubilité et de diffusivité entre les espèces volatiles. Nos données, obtenues dans des conditions voisines des conditions naturelles, ont des implications volcanologiques pour l’interprétation des textures de bulles et des mesures de gaz en sortie de conduit, ainsi que, plus spécifiquement, pour la dynamique des éruptions paroxysmales au Stromboli. / For a better understanding of the dynamics of ascent and eruption of basaltic magmas, we have performed high pressure (200–25 MPa) and high temperature (1200°C) decompression experiments specifically oriented to document gas bubble nucleation processes. Bubble nucleation occurs first during magma degassing and, so, it is critical to understand bubble nucleation processes to constrain the evolution of the gas phase (which is the driving force of explosive eruptions) in the volcanic conduit. Four main sets of experiments were conducted to better assess the role of the major volatiles (H2O, CO2, S), as well as the effects of ascent rate and crystals, on bubble vesiculation (nucleation, growth, coalescence) kinetics in basaltic magmas. The aim of the study is to understand the mechanisms which control the textural (number, size, shape of bubbles) and the chemical (dissolved volatile concentrations, gas composition) characteristics of natural products, and also to approach them experimentally. In this way, experimental melts, before and after decompression, were analysed texturally (by X-ray microtomography and MEB) and chemically (by FTIR and electron microprobe). Our results demonstrate a strong influence of CO2 on degassing mode (equilibrium vs. disequilibrium) and mechanisms, which are shown to be controlled by differences in solubility and diffusivity between the main volatile species. Finally, our data, obtained under conditions closely approaching natural eruptions, have volcanological implications for the interpretation of bubble textures and gas measurements, as well as, more specifically, for the dynamics of Strombolian paroxysms.
147

Cristalização de um vidro de basalto. / Crystallization of a basalt glass.

Sánchez González, Adriana Maria 10 December 2013 (has links)
Os materiais vitrocerâmicos de basalto representam uma importante família de vitrocerâmicos. Sendo que um dos desempenhos técnicos exigidos atualmente é o efeito anti-desgaste dos materiais, as vitrocerâmicas de basalto cobrem essa necessidade e têm uma aplicação direta por suas boas propriedades mecânicas e anti-abrasivas, além da vantagem que têm as rochas basálticas quanto à baixa temperatura de fusão e maior fluidez do fundido, o que as torna mais adequadas para o processamento cerâmico. No presente trabalho, rejeitos da mineração de rocha basáltica da região de Campinas, São Paulo, foram fundidos em escala laboratorial em forno elétrico a 1350°C, usando cadinhos de alta alumina, para a obtenção de uma primeira série de amostras de vidro. Mais uma série foi obtida, realizando a fusão da matéria-prima com adição de 0,5% em massa de Cr2O3 como agente de nucleação. Os vidros foram tratados termicamente à máxima temperatura de cristalização como sendo 880°C e 820°C durante 5, 10, 20, 30 e 60 minutos e 5, 20 e 60 minutos respectivamente. A evolução das fases cristalinas foi acompanhada por análise de densidade (método de Arquimedes) e difração de raios X (DRX). Foi realizada a medição da microdureza Vickers e resistência à micro-abrasão, e o vidro cristalizado observou-se por microscopia eletrônica de varredura (MEV). Os vidros da primeira série foram também moídos, até tamanhos de partícula ASTM 80 e ASTM 325, para avaliar sua capacidade de cristalização como pó de vidro. Eles foram caracterizados mediante DRX e MEV. / Basalt glass-ceramics represent one of the most important family of glass-ceramics. The wear resistant, is now the technical performance requirement in material, basalt glass-ceramics cover that need and have a direct application for their good mechanical and anti-abrasive properties. In addition, the basaltic rocks have the advantage of a low melt temperature and higher fluidity melt. In this paper, a mining waste of basaltic rock from the city of Campinas, São Paulo, was melted in laboratory scale, in an electric furnace at 1350°C, in high-alumina crucibles, to obtain the first series of basalt glass samples. Other series was obtained by melting of the raw material with addition of 0,5% wt. of Cr2O3 as a nucleating agent. The glasses were heat treated at the maximum crystallization temperature: 880oC during 5, 10, 20, 30, and 60 minutes and 820°C during 5, 20 and 60 minutes, respectively. The evolution of the crystalline phases was accompanied by density and X-ray diffraction (XRD) analyses. Vickers hardness and micro-abrasion resistance of the samples were also carried out, and the crystallized glasses were observed in a scanning electron microscope (SEM). The first series of glasses were also milled, until particle sizes ASTM 80 e ASTM 325, for the evaluation of their ability to crystallization as glass powder. They were characterized by XRD and SEM.
148

Geophysical and geochemical analyses of selected Miocene coastal basalt features, Clatsop County, Oregon

Pfaff, Virginia Josette 01 January 1980 (has links)
The proximity of Miocene Columbia River basalts to the "locally-erupted" coastal Miocene basalts in northwestern Oregon, and the compelling similarities between the two groups, suggest that the coastal basalts, rather than being locally erupted, may be the westward extension of plateau basalts derived from eastern Oregon and Washington. The local-origin hypothesis is based largely on the interpretation of coastal dikes and sills as representing vent areas; however, a complex mechanism, as yet unsatisfactorily defined, would be required to cause the eruption of virtually identical magmas simultaneously from source areas 500 km apart. This study, therefore, has investigated the coastal basalt intrusions both laterally and vertically. Geochemical and paleomagnetic analysis was used to determine the occurrence and distribution of basalt units; gravity surveys enabled an examination of the subsurface extensions of basalt intrusions in sedimentary rocks.
149

The structure and stratigraphy of the Columbia River basalt in the Chehalem Mountains, Oregon

Al-Eisa, Abdul-Rahman Mohammed 01 January 1980 (has links)
The Chehalem Mountains area, encompassing 70 square kilometers, is at the western extent of the Columbia River Basalt Group as mapped in western Oregon. The flows in the study area were identified as belonging to subdivisions of the Columbia River Basalt Group on the basis of physical characteristics and trace element geochemistry. The basalt flows are poorly exposed in the area and weathering is deep and extensive where the flows have been exposed. Where erosion has exposed the underlying marine sedimentary rocks, the basalt has failed in landslides.
150

The structure and stratigraphy of the Columbia River Basalt in the Hood River Valley, Oregon

Timm, Susan 01 January 1979 (has links)
The Hood River Valley, located 100 kilometers east of Portland, Oregon, is in the transition zone between two geologic provinces--the High Cascades and the Columbia Plateau. The entire valley is probably underlain by Columbia River Basalt, but it crops out only on steep hillsides and in stream valleys. The base of the basalt is not exposed in the thesis area. The basalt is overlain by Pliocene and Quaternary basalt and andesite, volcanic sediments and glacial debris. The stratigraphy of the Columbia River Basalt is useful in determining the path of the basalt flows into western Oregon, in mapping the structure and in reconstructing the tectonic development of the northern Oregon Cascades.

Page generated in 0.092 seconds