• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 584
  • 130
  • 100
  • 80
  • 41
  • 19
  • 9
  • 9
  • 8
  • 5
  • 3
  • 3
  • 3
  • 2
  • 2
  • Tagged with
  • 1153
  • 503
  • 490
  • 240
  • 233
  • 198
  • 198
  • 184
  • 173
  • 143
  • 112
  • 100
  • 95
  • 94
  • 92
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
191

Suivi à l'échelle nanométrique de l'évolution d'une électrode de silicium dans un accumulateur Li-ion par STEM-EELS / Nanoscale evolution of silicon electrodes for Li-ion batteries by low-loss STEM-EELS

Boniface, Maxime 22 December 2017 (has links)
L’accroissement des performances des accumulateurs Li-ion sur les 25 dernières années découle principalement de l’optimisation de leurs composants inactifs. Aujourd’hui, l’urgence environnementale impose de développer de nouveaux matériaux actifs d’électrode pour proposer la prochaine génération d’accumulateur qui participera à la transition énergétique. A cet effet, le silicium pourrait avantageusement remplacer le graphite des électrodes négatives à moyen terme. Cependant la rétention de capacité des électrodes de silicium est mise à mal par l’expansion volumique que le matériau subit lors sa réaction d’alliage avec le lithium, qui mène à la déconnexion des particules de Si et à une réduction continue de l’électrolyte. Une compréhension de ces phénomènes de vieillissement à l’échelle de la nanoparticule est nécessaire à la conception d’électrodes de silicium viables. Pour ce faire, la technique STEM-EELS a été optimisée de manière à s’affranchir des problèmes d’irradiation qui empêchent l’analyse des matériaux légers d’électrode négative et de la Solid electrolyte interface (SEI), grâce à l’analyse des pertes faibles EELS. Un puissant outil de cartographie de phase est obtenu et utilisé pour mettre en lumière la lithiation cœur-coquille initiale des nanoparticules de silicium cristallin, la morphologie hétérogène et la composition de la SEI, ainsi que la dégradation du silicium à l’issue de cyclages prolongés. Enfin, un modèle de vieillissement original est proposé, en s’appuyant notamment sur un effort de quantification des mesures STEM-EELS sur un grand nombre de nanoparticules. / Over the last 25 years, the performance increase of lithium-ion batteries has been largely driven by the optimization of inactive components. With today’s environmental concerns, the pressure for more cost-effective and energy-dense batteries is enormous and new active materials should be developed to meet those challenges. Silicon’s great theoretical capacity makes it a promising candidate to replace graphite in negative electrodes in the mid-term. So far, Si-based electrodes have however suffered from the colossal volume changes silicon undergoes through its alloying reaction with Li. Si particles will be disconnected from the electrode’s percolating network and the solid electrolyte interface (SEI) continuously grows, causing poor capacity retention. A thorough understanding of both these phenomena, down to the scale of a single silicon nanoparticle (SiNP), is critical to the rational engineering of efficient Si-based electrodes. To this effect, we have developed STEM-EELS into a powerful and versatile toolbox for the study of sensitive materials and heterogeneous systems. Using the low-loss part of the EEL spectrum allows us to overcome the classical limitations of the technique.This is put to use to elucidate the first lithiation mechanism of crystalline SiNPs, revealing Li1.5Si @ Si core-shells which greatly differs from that of microparticles, and propose a comprehensive model to explain this size effect. The implications of that model regarding the stress that develops in the crystalline core of SiNPs are then challenged via stress measurements at the particle scale (nanobeam precession electron diffraction) for the first time, and reveal enormous compressions in excess of 4±2 GPa. Regarding the SEI, the phase-mapping capabilities of STEM-EELS are leveraged to outline the morphology of inorganic and organic components. We show that the latter contracts during electrode discharge in what is referred to as SEI breathing. As electrodes age, disconnection causes a diminishing number of SiNPs to bear the full capacity of the electrode. Overlithiated particles will in turn suffer from larger volumes changes and cause further disconnection in a self-reinforcing detrimental effect. Under extreme conditions, we show that SiNPs even spontaneously turn into a network of thin silicon filaments. Thus an increased active surface will compound the reduction of the electrolyte and the accumulation of the SEI. This can be quantified by summing and averaging STEM-EELS data on 1104 particles. In half-cells, the SEI volume is shown to increase 4-fold after 100 cycles without significant changes in its composition, whereas in full cells the limited lithiation performance understandably leads to a mere 2-fold growth. In addition, as the operating potential of the silicon electrodes increases in full cells – potential slippage – organic products in the SEI switch from being carbonate-rich to oligomer-rich. Finally, we regroup these findings into an extensive aging model of our own, based on both local STEM-EELS analyses and the macro-scale gradients we derived from them as a whole.
192

A Theoretical Study of Alkali Metal Intercalated Layered Metal Dichalcogenides and Chevrel Phase Molybdenum Chalcogenides

Kganyago, Khomotso R. January 2004 (has links)
Thesis (Ph.D. (Engineering mechanics)) --University of Limpopo, 2004 / This thesis explores the important issues associated with the insertion of Mg2+ and Li+ into the solid materials: molybdenum sulphide and titanium disulphide. This process, which is also known as intercalation, is driven by charge transfer and is the basic cell reaction of advanced batteries. We perform a systematic computational investigation of the new Chevrel phase, MgxMo6S8 for 0 ≤ x ≤ 2, a candidate for high energy density cathode in prototype rechargeable magnesium (Mg) battery systems. Mg2+ intercalation property of the Mo6S8 Chevrel phase compound and accompanied structural changes were evaluated. We conduct our study within the framework of both the local-density functional theory and the generalised gradient approximation techniques. Analysis of the calculated energetics for different magnesium positions and composition suggest a triclinic structure of MgxMo6S8 (x = 1 and 2). The results compare favourably with experimental data. Band-structure calculations imply the existence of an energy gap located ~1 eV above the Fermi level, which is a characteristic feature of the electronic structure of the Chevrel compounds. Calculations of electronic charge density suggest a charge transfer from Mg to the Mo6S8 cluster, which has a significant effect on the Mo-Mo bond length. There is relatively no theoretical work, in particular ab initio pseudopotential calculations, reported in literature on structural stability, cations "site energy" calculations, and pressure work. Structures obtained on the basis from experimental studies of other ternary molybdenum sulphides are examined with respect to pressure-induced structural transformation. We report the first bulk and linear moduli of the new Chevrel phase structures. This thesis also studies the reaction between lithium and titanium disulfide, which is the perfect intercalation reaction, with the product having the same structure over the range of reaction 0  x  1 in LixTiS2. Calculated lattice parameters, bulk moduli, linear moduli, elastic constants, density of states, and Mulliken populations are reported. Our calculations confirm that there is a single phase present with an expansion of the crystalline lattice as is typical for a solid solution, about 10% perpendicular to the basal plane layers. A slight expansion of the lattice in the basal plane is also observed due to the electron density increasing on the sulfur ions. Details on the correlation between the electronic structure and the energetic (i.e. the thermodynamics) of intercalation are obtained by establishing the connection between the charge transfer and lithium intercalation into TiS2. The theoretical determination of the densities of states for the pure TiS2 and Li1TiS2 confirms a charge transfer. Lithium charge is donated to the S (3p) and Ti (3d) orbitals. Comparison with experiment shows that the calculated optical properties for energies below 12 eV agrees well with reflectivity spectra. The structural and electronic properties of the intercalation compound LixTiS2, for x = 1/4, 3/4, and 1, are also investigated. This study indicates that the following physical changes in LixTiS2 are induced by intercalation: (1) the crystal expands uniaxially in the c-direction, (2) no staging is observed. We also focus on the intercalation voltage where the variation of the cell potential with the degree of discharge for LiTiS2 is calculated. Our results show that it can be predicted with these well-developed total energy methods. The detailed understanding of the electronic structure of the intercalation compounds provided by this method gives an approach to the interpretation of the voltage composition profiles of electrode materials, and may now clearly be used routinely to determine the contributions of the anode and cathode processes to the cell voltage. Hence becoming an important tool in the selection and design of new systems. Keywords Magnesium rechargeable battery; Chevrel, Lithium batteries; Li and Mg-ion insertion; TiS2; Mo6S8; Charge transfer; reflectivity, intercalation, elastic constants, voltage, EOS, Moduli. / the National Research Foundation, the Royal Society(U.K),the Council for Scientific and Industrial Research,and Eskom
193

Room temperature ionic liquids as electrolytes for use with the lithium metal electrode

Howlett, Patrick C. January 2004 (has links)
Abstract not available
194

Electrochemical behavior of organic radical polymer cathodes in organic radical batteries with ionic liquid electrolytes

Cheng, Yen-Yao 09 October 2012 (has links)
The electrochemical behavior of a poly(2,2,6,6-tetramethylpiperidin- 1-oxyl-4-yl methacrylate) (PTMA) cathode in organic radical batteries with lithium bis(trifluoromethylsulfonyl)imide in N-butyl-N-methyl- pyrrolidinium bis(trifluoromethylsulfonyl)imide (LiTFSI/BMPTFSI) ionic liquid electrolytes is investigated. The ionic liquid electrolytes containing a high concentration of the LiTFSI salt have a high polarity, preventing the dissolution of the polyvinylidene fluoride (PVdF) binder and PTMA in the electrolytes. The results of cyclic voltammetry and AC impedance indicate that an increase in the LiTFSI concentration results in a decrease in the impedance of the lithium electrode, which affects the C-rate performance of batteries. The discharge capacity of the PTMA composite electrode in a 0.6 m LiTFSI/BMPTFSI electrolyte is 92.9 mAh g−1 at 1 C; its C-rate performance exhibits a capacity retention, 100 C/1 C, of 88.3%. Moreover, the battery with the 0.6-m LiTFSI/BMPTFSI electrolyte has very good cycle-life performance.
195

Modeling of electrochemical energy storage and energy conversion devices

Chandrasekaran, Rajeswari 29 July 2010 (has links)
With increasing interest in energy storage and conversion devices for automobile applications, the necessity to understand and predict life behavior of rechargeable batteries, PEM fuel cells and super capacitors is paramount. These electrochemical devices are most beneficial when used in hybrid configurations rather than as individual components because no single device can meet both range and power requirements to effectively replace internal combustion engines for automobile applications. A system model helps us to understand the interactions between components and enables us to determine the response of the system as a whole. However, system models that are available predict just the performance and neglect degradation. In the first part of the thesis, a framework is provided to account for the durability phenomena that are prevalent in fuel cells and batteries in a hybrid system. Toward this end, the methodology for development of surrogate models is provided, and Pt catalyst dissolution in PEMFCs is used as an example to demonstrate the approach. Surrogate models are more easily integrated into higher level system models than the detailed physics-based models. As an illustration, the effects of changes in control strategies and power management approaches in mitigating platinum instability in fuel cells are reported. A system model that includes a fuel cell stack, a storage battery, power-sharing algorithm, and dc/dc converter has been developed; and preliminary results have been presented. These results show that platinum stability can be improved with only a small impact on system efficiency. Thus, this research will elucidate the importance of degradation issues in system design and optimization as opposed to just initial performance metrics. In the second part of the thesis, modeling of silicon negative electrodes for lithium ion batteries is done at both particle level and cell level. The dependence of the open-circuit potential curve on the state of charge in lithium insertion electrodes is usually measured at equilibrium conditions. Firstly, for modeling of lithium-silicon electrodes at room temperature, the use of a pseudo-thermodynamic potential vs. composition curve based on metastable amorphous phase transitions with path dependence is proposed. Volume changes during lithium insertion/de-insertion in single silicon electrode particle under potentiodynamic control are modeled and compared with experimental data to provide justification for the same. This work stresses the need for experiments for accurate determination of transfer coefficients and the exchange current density before reasoning kinetic hysteresis for the potential gap in Li-Si system. The silicon electrode particle model enables one to analyze the influence of diffusion in the solid phase, particle size, and kinetic parameters without interference from other components in a practical porous electrode. Concentration profiles within the silicon electrode particle under galvanostatic control are investigated. Sluggish kinetics is established from cyclic voltammograms at different scan rates. Need for accurate determination of exchange current density for lithium insertion in silicon nanoparticles is discussed. This model and knowledge thereof can be used in cell-sandwich model for the design of practical lithium ion cells with composite silicon negative electrodes. Secondly, galvanostatic charge and discharge of a silicon composite electrode/separator/ lithium foil is modeled using porous electrode theory and concentrated solution theory. Porosity changes arising due to large volume changes in the silicon electrode with lithium insertion and de-insertion are included and analyzed. The concept of reservoir is introduced for lithium ion cells to accommodate the displaced electrolyte. Influence of initial porosity and thickness of the electrode on utilization at different rates is quantitatively discussed. Knowledge from these studies will guide design of better silicon negative electrodes to be used in dual lithium insertion cells for practical applications.
196

Electrochemical-thermal modeling and microscale phase change for passive internal thermal management of lithium ion batteries

Bandhauer, Todd Matthew 14 November 2011 (has links)
Energy-storing electrochemical batteries are the most critical components of high energy density storage systems for stationary and mobile applications. Lithium-ion batteries have received considerable interest for hybrid electric vehicles (HEV) because of their high specific energy, but face inherent thermal management challenges that have not been adequately addressed. In the present investigation, a fully coupled electrochemical and thermal model for lithium-ion batteries is developed to investigate the impact of different thermal management strategies on battery performance. This work represents the first ever study of these coupled electrochemical-thermal phenomena in batteries from the electrochemical heat generation all the way to the dynamic heat removal in actual HEV drive cycles. In contrast to previous modeling efforts focused either exclusively on particle electrochemistry on the one hand or overall vehicle simulations on the other, the present work predicts local electrochemical reaction rates using temperature-dependent data on commercially available batteries designed for high rates (C/LiFePO4) in a computationally efficient manner. Simulation results show that conventional external cooling systems for these batteries, which have a low composite thermal conductivity (~1 W/m-K), cause either large temperature rises or internal temperature gradients. Thus, a novel, passive internal cooling system that uses heat removal through liquid-vapor phase change is developed. Although there have been prior investigations of phase change at the microscales, fluid flow at the conditions expected here is not well understood. A first-principles based cooling system performance model is developed and validated experimentally, and is integrated into the coupled electrochemical-thermal model for assessment of performance improvement relative to conventional thermal management strategies. The proposed cooling system passively removes heat almost isothermally with negligible thermal resistances between the heat source and cooling fluid. Thus, the minimization of peak temperatures and gradients within batteries allow increased power and energy densities unencumbered by thermal limitations.
197

Solution-based chemical synthesis of electrode materials for electrochemical power sources /

Jeong, Yeon Uk, January 2000 (has links)
Thesis (Ph. D.)--University of Texas at Austin, 2000. / Vita. Includes bibliographical references (leaves 178-184). Available also in a digital version from Dissertation Abstracts.
198

Direct measurement of vanadium cross-over in an operating redox flow battery

Sing, David Charles 15 November 2013 (has links)
A redox flow battery (RFB) is an electrochemical energy storage device in which the storage medium is in the form of liquid electrolyte, which is stored in external reservoirs separate from the cell stack. The storage capacity of such systems is limited by the size of the external tanks, making the RFB an ideal technology for grid level energy storage. The vanadium redox flow battery (VRB) is a particularly attractive variant of the RFB, due to its use of a single transition-metal element in both the positive and negative electrolytes. However, the performance of the VRB is affected by the cross-over of electrolytes through the ion-exchange membrane which separates the positive and negative electrolytes. Cross-over causes degradation of energy storage efficiency and long term capacity loss. Previous studies of ion cross-over have focused primarily on the measurement of ion diffusion across ion exchange membranes in the absence of electrical current. In this work a novel VRB cell is described in which ion cross-over can be measured directly in the presence and absence of electrical current. Measurements are made of cross-over using this cell with three different types of ion exchange membrane in both charge and discharge modes. The results reported in this work show that the rate of ion cross-over can be greatly enhanced or suppressed depending upon the magnitude of the current flow and its direction relative to the ion concentration gradient. / text
199

Charging of lithium-ion batteries with a hydrogen fuel cell for an electrical bicycle.

Monjaux, Aurelien. January 2012 (has links)
M. Tech. Electrical Engineering. / Hydrogen is in the middle of many discussions as being a good alternative to petrol for the struggle against pollution and global warming. The fact that hydrogen can be found in infinite quantities such as in water or in space makes it a renewable energy. It is the object of much research works in order to be used in replacement of fossil energy such as in hybrid vehicles. However, the main shed of hydrogen is the difficulties to store it. Indeed, being the first element of the periodic table, it is the lightest, spreads a lot and can burn easily. The aim of this project is to achieve the wiring diagram of an electrical bicycle. The use of a hydrogen fuel cell allows feeding the electrical motor of the vehicle. However, due to a matter of low response time of the fuel cell, lithium-ion batteries are also used. Indeed, at the start state for instance, the fuel cell needs some time to warm and reach the nominal temperature of functioning. Lithium-ion batteries allow feeding the electrical motor during the warm up time but also to respond to peak of load. Hybrid motorization represents the future of car industry and tends to be used as a replacement of petrol engine partly responsible of greenhouse gases emissions. Some of those vehicles are already put in place in some big cities all over the world and allow moving rapidly without polluting. This project concerns a hybrid system for an electrical bicycle but the idea is to extend to bigger kind of vehicles.
200

Development of sulfur-polyacrylonitrile/graphene composite cathode for lithium batteries

Li, Jing January 2013 (has links)
Rechargeable lithium sulfur (Li-S) batteries are potentially safe, environmentally friendly and economical alternative energy storage systems that can potentially be combined with renewable sources including wind solar and wave energy. Sulfur has a high theoretical specific capacity of ~1680 mAh/g, attainable through the reversible redox reaction denoted as S8+16Li ↔8Li¬2S, which yields an average cell voltage of ~2.2 V. However, two detrimental factors prevent the achievement of the full potential of the Li-S batteries. First, the poor electrical/ionic conductivity of elemental sulfur and Li2S severely hampers the utilization of active material. Second, dissolution of intermediate long-chain polysulfides (Li2Sn, 2<n<7) into the electrolyte and their shuttle between cathode and anode lead to fast capacity degradation and low Coulombic efficiency. As a result of this shuttle process, insoluble and insulating Li2S/Li2S2 precipitate on the surface of electrodes causing loss of active material and rendering the electrode surface electrochemically inactive. Extensive research efforts have been devoted to overcome the aforementioned problems, such as combination of sulfur with conductive polymers, and encapsulation or coating of elemental sulfur in different nanostructured carbonaceous materials. Noteworthy, sulfur-polyacrylonitrile (SPAN) composites, wherein sulfur is chemically bond to the polymer backbone and PAN acts as a conducting matrix, have shown some success in suppressing the shuttle effect. However, due to the limited electrical conductivity of polyacrylonitrile, the capacity retention and rate performance of the SPAN systems are still very modest, which shows only 67 % retention of the initial capacity after 50 cycles for the binary system. Recently, graphene has been intensively investigated for enhancing the rate and cycling performance of lithium sulfur batteries. Graphene, which has a two-dimensional, one-atom-thick nanosheet structure, offers extraordinary electronic, thermal and mechanical properties. Herein, a sulfur-polyacrylonitrile/reduced graphene oxide (SPAN/RGO) composite with unique electrochemical properties was prepared. PAN is deposited on the surface of RGO sheets followed by ball milling with sulfur and heat treatment. Infrared spectroscopy and microscopy studies indicate that the composite consists of RGO decorated with SPAN particles of 100 nm average size. The PAN/RGO composite shows good overall electrochemical performance when used in Li/S batteries. It exhibits ~85% retention of the initial reversible capacity of 1467 mAh/g over 100 cycles at a constant current rate of 0.1 C and retains 1100 mAh/g after 200 cycles. In addition, the composite displays excellent Coulombic efficiency and rate capability, delivering up to 828 mAh/g reversible capacity at 2 C. The improved performance stems from composition and structure of the composite, wherein RGO renders a robust electron transport framework and PAN acts as sulfur/polysulfide absorber.

Page generated in 0.0565 seconds