Spelling suggestions: "subject:"[een] BAYESIAN INVERSION"" "subject:"[enn] BAYESIAN INVERSION""
11 |
Predicting earthquake ground shaking due to 1D soil layering and 3D basin structure in SW British Columbia, CanadaMolnar, Sheri 20 July 2011 (has links)
This thesis develops and explores two methodologies to assess earthquake ground shaking in southwestern British Columbia based on 1D soil layering and 3D basin structure. To assess site response based on soil layering, microtremor array measurements were conducted at two sites of contrasting geology to estimate Rayleigh-wave dispersion curves. A Bayesian inversion algorithm is developed to invert the dispersion data for the shear-wave velocity (VS) profile together with quantitative uncertainty estimates, accounting rigorously for data error covariance and model parameterization selection. The recovered VS profiles are assessed for reliability by comparison with invasive VS measurements at each site with excellent agreement. Probabilistic site response analysis is conducted based on a sample of VS profiles drawn from the posterior probability density of the microtremor inversion. The quantitative uncertainty analysis shows that the rapid and inexpensive microtremor array method provides sufficient resolution of soil layering for practical characterization of earthquake ground motion.
To assess the effects of 3D Georgia basin structure on long-period (> 2 s) ground motion for large scenario earthquakes, numerical 3D finite difference modelling of viscoelastic wave propagation is applied. Both deep (> 40 km) subducting Juan de Fuca plate and crustal (5 km) North America plate earthquakes are simulated in locations congruent with known seismicity. Simulations are calibrated by comparing synthetic waveforms with 36 selected strong- and weak-motion seismograms of the 2001 MW 6.8 Nisqually earthquake. The ratio between predicted peak ground motions in models with and without Georgia basin sediments is applied as a quantitative measure of basin amplification. Steep edges in the upper 1 km of the northwest and southeast extents of the basin are coincident with the appearance of surface waves. Focussing of north-to-northeast propagating surface waves by shallow (< 1 km) basin structure increases ground motion in a localized region of southern Greater Vancouver. This effect occurs for both types of earthquakes located south-southwest of Vancouver at distances greater than ~80 km. The predicted shaking level is increased up to 17 times and the duration of moderate shaking (> 3.4 cm/s) is up to 16 times longer due to the 3D Georgia basin structure. / Graduate
|
12 |
Vliv neurčitosti rychlostního modelu při studiu zemětřesného zdroje / Influence of velocity model uncertainty in earthquake source inversionsHalló, Miroslav January 2018 (has links)
Title: Influence of velocity model uncertainty in earthquake source inversions Author: Miroslav Halló Department: Department of Geophysics Supervisor: doc. RNDr. František Gallovič, Ph.D., Department of Geophysics Abstract: Earthquake ground motions originate from rupture processes on faults in Earth. Constraints on earthquake source models are important for better un- derstanding of earthquake physics and for assessment of seismic hazard. The source models are inferred from observed waveforms by inverse modeling, which is subject to uncertainty. For large tectonic earthquakes the major source of un- certainty is an imprecise knowledge of crustal velocity model. The research topic of this Thesis is the influence of the velocity model uncertainty on the inferred source models. We perform Monte-Carlo simulations of Green's functions (GFs) in randomly perturbed velocity models to reveal the effects of the imprecise veloc- ity model on the synthetic waveforms. Based on the knowledge gained, we derive closed-form formulas for approximate covariance functions to obtain fast and effective characterization of the GFs' uncertainty. We demonstrate that approxi- mate covariances capture correctly the GF variability as obtained by the Monte- Carlo simulations. The proposed approximate covariance functions are...
|
13 |
[en] PROBABILISTIC PORE PRESSURE PREDICTION IN RESERVOIR ROCKS THROUGH COMPRESSIONAL AND SHEAR VELOCITIES / [pt] PREVISÃO PROBABILÍSTICA DE PRESSÃO DE POROS EM ROCHAS RESERVATÓRIO ATRAVÉS DE VELOCIDADES COMPRESSIONAIS E CISALHANTESBRUNO BROESIGKE HOLZBERG 24 March 2006 (has links)
[pt] Esta tese propõe uma metodologia de estimativa de
pressão
de poros em rochasreservatório
através dos atributos sísmicos velocidade compressional
V(p) e velocidade
cisalhante V(s). Na metodologia, os atributos são
encarados como observações realizadas
sobre um sistema físico, cujo comportamento depende de
um
determinado número de
grandezas não observáveis, dentre as quais a pressão de
poros é apenas uma delas. Para
estimar a pressão de poros, adota-se uma abordagem
Bayesiana de inversão. Através de
uma função de verossimilhança, estabelecida através de
um
modelo de física de rochas
calibrável para a região, e do teorema de Bayes, combina-
se as informações pré-existentes
sobre os parâmetros de rocha, fluido e estado de tensões
com os atributos sísmicos
observados, inferindo probabilisticamente a pressão de
poros. Devido a não linearidade
do problema e ao interesse de se realizar uma rigorosa
análise de incertezas, um algoritmo
baseado em simulações de Monte Carlo (um caso especial
do
algoritmo de Metropolis-
Hastings) é utilizado para realizar a inversão. Exemplos
de aplicação da metodologia
proposta são simulados em reservatórios criados
sinteticamente. Através dos exemplos,
demonstra-se que o sucesso da previsão de pressão de
poros
depende da combinação de
diferentes fatores, como o grau de conhecimento prévio
sobre os parâmetros de rocha e
fluido, a sensibilidade da rocha perante a variação de
pressões diferenciais e a qualidade
dos atributos sísmicos. Visto que os métodos existentes
para previsão de pressão de poros
utilizam somente o atributo V(p) , a contribuição do
atributo V(s) na previsão é avaliada. Em
um cenário de rochas pouco consolidadas (ou em areias),
demonstra-se que o atributo V(s)
pode contribuir significativamente na previsão, mesmo
apresentando grandes incertezas
associadas. Já para um cenário de rochas consolidadas,
demonstra-se que as incertezas
associadas às pressões previstas são maiores, e que a
contribuição do atributo V(s) na
previsão não é tão significativa quanto nos casos de
rochas pouco consolidadas. / [en] This work proposes a method for pore pressure prediction
in reservoir rocks
through compressional- and shear-velocity data (seismic
attributes). In the method, the
attributes are considered observations of a physic system,
which behavior depends on a
several not-observable parameters, where the pore pressure
is only one of these
parameters. To estimate the pore pressure, a Bayesian
inversion approach is adopted.
Through the use of a likelihood function, settled through
a calibrated rock physics model,
and through the Bayes theorem, the a priori information
about the not-observable
parameters (fluid and rock parameters and stress state) is
combined with the seismic
attributes, inferring probabilistically the pore pressure.
Due the non-linearity of the
problem, and due the uncertainties analysis demanding, an
algorithm based on Monte
Carlo simulations (a special case of the Metropolis-
Hastings algorithm) is used to solve the
inverse problem. The application of the proposed method is
simulated through some
synthetic examples. It is shown that a successfully pore
pressure prediction in reservoir
rocks depends on a set of factors, as how sensitive are
the rock velocities to pore pressure
changes, the a priori information about rock and fluid
parameters and the uncertainties
associates to the seismic attributes. Since the current
methods for pore pressure prediction
use exclusively the attribute compressional velocity V(p),
the contribution of the attribute
shear velocity V(s) on prediction is evaluated. In a
poorly consolidated rock scenario (or in
sands), the V(s) data, even with great uncertainties
associated, can significantly contribute to
a better pore pressure prediction. In a consolidated rock
scenario, the uncertainties
associated to pore pressure estimates are higher, and the
s V data does not contribute to
pore pressure prediction as it contributes in a poorly
consolidated rock scenario.
|
14 |
Etude photométrique des lunes glacées de Jupiter / Photometric study of Jupiter's moonsBelgacem, Ines 15 November 2019 (has links)
Les satellites glacés de Jupiter sont d'un grand intérêt scientifique dans la recherche d'habitabilité au sein de notre système solaire. Elles abritent probablement toutes trois des océans d'eau liquide sous leur croûte glacée. Leurs surfaces présentent différents stades d’évolution – celle de Callisto est très ancienne et entièrement recouverte de cratères, celle de Ganymede est un mélange de terrains sombres et cratérisés et de plaines claires et plus jeunes et la surface d’Europa est la plus jeune et présente des signes d’activité récente. Cette thèse porte sur la photométrie, c’est à dire l’étude de l’énergie lumineuse réfléchie par une surface, en fonction des géométries d’éclairement et d’observation. Les études photométriques permettent de déterminer l’état physique et la microtexture des surfaces (porosité, structure interne, forme des grains, rugosité, transparence…). Une bonne connaissance photométrique est également d'une importance cruciale dans la correction des jeux de données pour toute étude cartographique ou spectroscopique ainsi que pour les futures missions de cette décennie : Europa Clipper de la NASA et JUpiter ICy Moons Explorer de l’ESA.Deux types d’information sont nécessaires pour réaliser une étude photométrique : des données de réflectance et des données géométriques (conditions d’illumination et d'observation). Pour obtenir les premières, nous avons utilisé et calibré des images de missions spatiales passées - Voyager, New Horizons et Galileo. Pour obtenir les secondes, nous avons développé des outils permettant de corriger les métadonnées de ces images (ex : la position et l'orientation des sondes) afin d’obtenir des informations géométriques précises. Nous avons, d’autre part, développé un outil d’inversion pour estimer les paramètres photométriques de Hapke sur des régions d’Europa, Ganymede et Callisto sur l’ensemble du jeu de données en un seul calcul. Enfin, nous discutons des liens possibles entre les paramètres photométriques estimés, la microtexture de la surface et les processus endogènes/exogènes mis en jeu. / Jupiter's icy moons are of great interest in the search for habitability in our Solar System. They probably all harbor liquid water ocean underneath their icy crust. Their surfaces present different stages of evolution – Callisto is heavily cratered and the oldest, Ganymede shows a combination of dark cratered terrain and younger bright plains and Europa’s surface is the youngest with signs of recent and maybe current activity. This work focuses on photometry, i.e. the study of the light scattered by a surface in relation to the illumination and observation geometry. Photometric studies give us insight on the physical state and microtexture of the surface (compaction, internal structure, shape, roughness, transparency…). A good photometric knowledge is also of crucial importance in the correction of datasets for any mapping or spectroscopic study as well as for the future missions of this decade – NASA’s Europa Clipper and ESA’s JUpiter ICy moons Explorer.Two pieces of information are necessary to conduct a photometric study – reflectance data and geometric information (illumination, viewing conditions). For the former, we have used and calibrated images from past space missions – Voyager, New Horizons and Galileo. For the latter, we have developed tools to correct these images metadata (e.g. spacecraft position and orientation) to derive precise geometric information. Moreover, we have developed a Bayesian inversion tool to estimate Hapke’s photometric parameters on regions of Europa, Ganymede and Callisto. We estimate all parameters on our entire dataset at once. Finally, we discuss the possible links between the photometric parameters, the surface microtexture and endogenic/exogenic processes.
|
Page generated in 0.0475 seconds