• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 79
  • 18
  • 10
  • 7
  • 7
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 151
  • 25
  • 22
  • 22
  • 21
  • 21
  • 16
  • 15
  • 14
  • 14
  • 12
  • 12
  • 11
  • 10
  • 10
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
61

[pt] CARACTERIZAÇÃO E FUNCIONALIZAÇÃO DE SÍLICA XEROGEL PARA BIOSSENSOR PLASMÔNICO / [en] CHARACTERIZATION AND FUNCTIONALIZATION OF SILICA XEROGEL FOR PLASMONIC BIOSENSOR

WANESSA AFONSO DE ANDRADE 22 June 2023 (has links)
[pt] Investigamos as propriedades ópticas de sistemas compostos por nanoilhas de ouro (Au) funcionalizadas com biotina, na superfície de monolitos de xerogéis de sílica (SiO2), visando desenvolvere uma plataforma para biossensores baseados na Ressonância de Plasmon de Superfície Localizada (LSPR), devido à sua elevada sensibilidade a alterações no ambiente químico próximo. Os xerogéis foram sintetizados por meio de um processo de sol-gel de catálise em duas etapas. Uma solução de água deionizada, etanol e tetraetil ortossilicato foi misturada sob agitação magnética a frio, com uma proporção molar de 8,5:3,5:1, e soluções de ácido clorídrico e hidróxido de amônio foram utilizadas como catalisadores para hidrólise e condensação, respectivamente, em moldes de polipropileno. Os géis foram envelhecidos nos moldes e convertidos em xerogéis por secagem a 600 graus C em um forno. Foi depositado um filme de Au de 20 nm na superfície dos xerogéis por sputtering. Em seguida, os xerogéis de sílica com filme de ouro (Au@SiO2) foram submetidos a um tratamento térmico em forno elétrico, para criar as nanoilhas de Au. Observou-se uma mudança de coloração, de azul para rosa, característica das AuNPs. Em seguida, os sistemas AuNP@SiO2 xerogéis foram funcionalizados em dois passos consecutivos com cisteamina (CA) e N-hidroxissuccinimidobiotina (NHSB) para a detecção de avidina em meio aquoso. O par biotina-avidina é um sistema amplamente conhecido para testar biossensores, devido à sua alta especificidade e sensibilidade muito baixa. O processo de funcionalização foi monitorado por absorbância óptica UV-vis para cada passo. Soluções aquosas com concentrações de avidina (10(-6) M, 10(-7) M, 10(-8) M, 10(-9) M e 10(-10M) foram utilizadas para testar a detecção e a sensibilidade. Observou-se um deslocamento médio de 52 nm na absorbância de todas as concentrações testadas, indicando que este sistema é promissor para aplicações em biossensores plasmônicos. / [en] In this study, the optical properties of systems composed of biotin-functionalized gold nanoislands on the surface of silica xerogel monoliths (SiO2) were investigated, aiming to develop an inorganic and inert solid platform for biosensors based on Localized Surface Plasmon Resonance (LSPR) due to their high sensitivity to changes in the nearby chemical environment. The silica xerogels were synthesized through a two-step catalytic sol-gel process, where a solution of deionized water, ethanol, and tetraethyl orthosilicate was mixed under cold magnetic stirring, with a molar ratio of 8.5:3.5:1, and solutions of hydrochloric acid and ammonium hydroxide were used as catalysts for hydrolysis and condensation, respectively, in polypropylene molds. Later, the gels were aged in molds and converted to xerogels by drying at 600 C degrees in an oven. To create the gold nanoislands, a thin film of 20 nm Au was deposited on one of the top surfaces of the xerogels by sputtering, and then the Au@SiO2 xerogels were subjected to heat treatment in an electric furnace. A color change of the samples from blue to pink was observed, characteristic of gold nanoparticles. Then, the AuNP@SiO2 xerogel systems were functionalized in two consecutive steps with cysteamine (CA) and N-hydroxysuccinimide-biotin (NHSB) for the detection of avidin in an aqueous solution. The biotin-avidin pair is a well-known system for testing biosensors, due to its high specificity and very low sensitivity. The functionalization process was monitored by UV-Vis optical absorbance for each step. Aqueous solutions with concentrations of avidin (10(-6) M, 10(-7) M, 10(-8) M, 10(-9) M and 10(-10) M) were used to test detection and sensitivity. An average shift of 52 nm was observed in the absorbance spectrum of all tested concentrations, indicating that this system is a promising structure for plasmonic biosensor applications.
62

A DNAZYME-LINKED SIGNAL AMPLIFICATION ASSAY FOR BACTERIAL BIOSENSING

Mainguy, Alexa January 2021 (has links)
RNA-cleaving DNAzymes (RCDs) are a class of functional nucleic acids that can bind various targets ranging in size from small molecules to large proteins, which results in activation of cleavage activity. The activation of RCDs results in the cleavage of a ribonucleotide site in an otherwise all-DNA substrate, leading to two cleavage fragments. In this work, a previously identified DNAzyme that binds to a protein biomarker endogenous to Helicobacter pylori (J99) crude extracellular matrix was evaluated for coupling to an isothermal amplification method termed rolling circle amplification (RCA) as a way to improve the originally reported detection limit. Three RCD constructs were designed with the goal of generating a cleavage fragment that could act as a primer to initiate RCA. The first method used the original HP DNAzyme, which liberated a short cleavage fragment that could be used as a primer. However, the primer fragment was rapidly digested by the bacterial matrix, preventing RCA. A second method evaluated use of a circularized substrate and separate RCD to generate a primer, however this system was not capable of generating a cleavage fragment. A final method redesigned the original RCD to move the substrate region from the 3’ to the 5’ end of the RCD, causing the longer RCD-containing fragment to be the primer for RCA. In this case, target-triggered cleavage was observed and the resulting primer was sufficiently resistant to digestion to allow its use as a primer for RCA. Preliminary characterization of the rearranged RCD showed that it retained selectivity similar to the original RCD, but that the cleavage rate was slower. In addition, the RCA based reaction, while successful, did not produce improved detection sensitivity relative to unamplified assays. Methods to further improve RCA performance are discussed for future work. / Thesis / Master of Science (MSc)
63

Tapered Optical Fiber Platform for Biosensing Applications

King, Branden Joel 17 June 2014 (has links)
No description available.
64

Enabling sweat-based biosensors:Solving the problem of low biomarker concentration in sweat

Jajack, Andrew J. 29 May 2018 (has links)
No description available.
65

MOLECULAR RECOGNITION EVENTS IN POLYMER-BASED SYSTEMS

Mateen, Rabia January 2019 (has links)
Molecular recognition is an important tool for developing tunable controlled release systems and fabricating biosensors with increased selectivity and sensitivity. The development of polymer-based materials that exploit molecular recognition events such as host-guest complexation, enzyme-substrate and enzyme-inhibitor interactions and nucleic acid hybridization was pursued in this thesis. Using polymers as an anchor for molecular recognition can enhance the affinity, selectivity, and the capacity for immobilization of recognition units, enabling the practical use of affinity-based systems in real applications. To introduce the potential for immobilization while preserving or enhancing the affinity of small molecule recognition units, the affinity of derivatized cyclodextrins for the hydrophobic drug, dexamethasone, was investigated. Cyclodextrins (CDs) are molecules that possess a hydrophilic exterior and a hydrophobic cavity capable of accommodating a wide range of small molecule guests. Analysis of the solubilization capacities, thermodynamic parameters and aggregative potentials of carboxymethyl and hydrazide derivatives of CDs established the dextran-conjugated βCD derivative as an ideal carrier of hydrophobic drugs and the hydrazide βCD derivative as an optimal solubilizer of lipophilic pharmaceuticals, both alone and when incorporated in a polymer-based drug delivery vehicle. To enable non-covalent immobilization and stabilization of biomacromolecular recognition units, a printed layer hydrogel was investigated as a selective diffusion barrier for analyte sensing and enzyme inhibitor recognition. A printable hydrogel platform was developed from an established injectable system composed of aldehyde- and hydrazide-functionalized poly(oligoethylene glycol methacrylate) polymers. The printed layer hydrogel effectively immobilized a wide range of enzymes and protected enzyme activity against time-dependent and protease-induced denaturation, while facilitating the diffusion of small molecules. Furthermore, to demonstrate the potential of the printed film hydrogel immobilization layer to enhance the selectivity of the target, the printable hydrogel platform was used to develop a microarray-based assay for the screening of inhibitors of the model enzyme, β-lactamase. The assay was able to accurately quantify dose-response relationships of a series of established inhibitors, while reducing the required reagent volumes in traditional drug screening campaigns by 95%. Most significantly, the assay demonstrated an ability to discriminate true inhibitors of β-lactamase from a class of non-specific inhibitors called promiscuous aggregating inhibitors. Finally, to enable non-covalent immobilization of DNA recognition units, the printable hydrogel-based microarray was tested for its ability to immobilize DNA recognition sites and promote the detection of DNA hybridization events. A long, concatameric DNA molecule was generated through rolling circle amplification and was used as a sensing material for the detection of a small, fluorophore labeled oligonucleotide. The printable hydrogel was able to effectively entrap the rolling circle amplification product. Properties of the printable hydrogel were investigated for their ability to support the detection of DNA hybridization events. / Thesis / Doctor of Philosophy (PhD) / This thesis describes the development of polymer-based materials that exploit molecular recognition events for drug delivery and biosensing applications. First, cyclodextrins (CDs) are molecules that are capable of binding a wide range of small molecules. A comprehensive analysis of the complexation properties of CD derivatives revealed critical insight regarding their application in polymer-based drug delivery vehicles. Second, a printable hydrogel platform was developed to support the immobilization and activity of biomolecules and establish a biosensing interface that facilitates the diffusion of small molecules but not molecular aggregates. A microarray-based assay was developed by employing the printed hydrogel interface for the screening of inhibitors of the model enzyme, β-lactamase, and the detection of DNA hybridization events.
66

Employing Functional Nucleic Acids as Molecular Recognition Elements Within Modular Biosensors

Manochehry, Sepehr January 2019 (has links)
Advances in our ability to detect biological targets relevant to human health have come from the engineering of biological molecules into assemblies capable of performing target-induced signal generation. Such assemblies, known as biosensors, are composed of a molecular recognition element (MRE) and a signal generating transduction element. One MRE class that has received great attention in recent years is functional nucleic acids, which include DNA aptamers and DNAzymes. Since 1990, a large number of functional nucleic acids have been reported. However, broad commercial use of functional nucleic acids in applications that benefit human health is sparse. The goal of this thesis is to expand the usefulness of functional nucleic acids. The thesis is made of four projects. In the first project I developed a simple colorimetric biosensor for the detection of a toxic metal ion using a reported RNA-cleaving DNAzyme coupled with urease as the signal reporter. This is followed by a project where I developed a highly effective method for the synthesis and purification of the DNA-urease conjugate needed for the biosensor. I then turned my attention to the search for high-affinity DNA aptamers that bind VEGF-165, an important human protein found to be relevant in the progression of cancers. Given that VEGF-165 is a homodimeric protein, in my third project I looked into the suitability of reported DNA aptamers for this protein for the creation of dimeric aptamers with higher binding affinity. I examined multiple factors that may affect the successful engineering of dimeric aptamers and determined that none of the existing aptamers are compatible for creating a productive dimeric aptamer. With this finding, I made an effort to create our own aptamers for this protein target. I was able to isolate a new aptamer that appears to be an excellent candidate for creating a higher affinity DNA aptamer. Overall, my work adds to our increasing appreciation of the functional capability demonstrated by single-stranded DNA molecules. More importantly, I hope the methods I have developed and new functional DNA molecules I have generated in this thesis will continue to drive the development of the functional nucleic acid field and contribute to the health research community’s efforts to increase human longevity. / Thesis / Doctor of Philosophy (PhD)
67

Multifunctional Polymer Fibers for Wearable Biosensors and Neural Medical Treatments

Parrott, Jeffery Alexander 02 January 2025 (has links)
As scientists learn more about disease pathologies and treat various medical conditions, the need to develop new tools grows rapidly. Multifunctional polymer fibers allow scientists to have a plethora of tools by fine tuning parameters to create affordable, unique, and adaptable devices for analyte sensing and disease treatment. The range of applications mutltifunctional fibers have in biomedical applications can be seen with sensing in wearable electronics or in neural probes due to their ability to easily integrate microfluidic systems, electrical, and optical means of sensing and stimulating. This thesis will demonstrate several ways fiber devices can be used in biomedicine and show the future direction of fiber based devices. / Master of Science / Everyday scientists face new challenges and seek to understand new aspects of many medical conditions in the effort to cure or treat diseases. The common goal of improving the quality of life people face prompts the need for innovative, individualized, and minimized systems for treating medical conditions. Whether the condition involves sensing sweat to maintain glucose levels, extracting small tumorous tissue in sensitive areas, or detecting seizures before they happen, multifunctional fiber devices show a promising future for many biomedical device needs. Their ability to be easily made in a quantity of hundreds of meters at a time, combined with their tunable parameters, allow for them to be used and catered to many different applications. This thesis demonstrates several ways fiber devices have been used and what areas they can expand into as the field progresses.
68

BIOSENSING SYSTEMS FOR THE DETECTION OF BACTERIAL QUORUM SENSING MOLECULES: A TOOL FOR INVESTIGATING BACTERIA-RELATED DISORDERS AND FOOD SPOILAGE PREVENTION

Raut, Nilesh G 01 January 2012 (has links)
Quorum sensing enables bacteria to communicate with bacteria of the same or different species, and to modulate their behavior in a cell-density dependent manner. Communication occurs by means of small quorum sensing signaling molecules (QSMs) whose concentration is proportional to the population size. When a QSM threshold concentration is reached, certain genes are expressed, thus allowing control of several processes, such as, virulence factor production, antibiotic production, and biofilm formation. Not only many pathogenic bacteria are known to produce QSMs, but also QSMs have been identified in some bacteria-related disorders. Therefore, quantitative detection of QSMs present in clinical samples may be a useful tool in the investigation and monitoring of bacteria-related diseases, thus prompting the use of QSMs as biomarkers of disease. Herein, we have developed and utilized whole-cell biosensing systems and protein based biosensing systems to detect QSMs in clinical samples, such as, saliva, stool, and bowel secretions. Additionally, since bacteria are responsible for food spoilage, we employed the developed biosensing systems to detect QSMs in food samples and demonstrated their applicability for early identification of food contamination. Furthermore, we have utilized these biosensing systems to screen antibacterial compounds employed for food preservation, namely, generally regarded as safe (GRAS) compounds, for their effect on quorum sensing.
69

Development of a multiplexing biosensor platform using SERS particle immunoassay technology

Kumarswami, Neelam January 2014 (has links)
The purpose of this study is to demonstrate the ability of surface enhanced Raman scattering (SERS) active particles to enable multiplexed immunoassays in a lateral flow format for point of care (POC) testing. The SERS particles used for this study are chemically active glass coated gold particles, containing tracer molecules which in principle can be chosen to provide Raman Spectra with unique features allowing multiple tracers to be simultaneously measured and distinguished without interference between each other. Lateral flow immunoassay technology is the important part of this study and can be conveniently packaged for the use of other than highly skilled technicians outside of the laboratory. A well-known (single channel - simplex) device for the pregnancy test is a typical example of the lateral flow assay. Similar formats have been/are being developed by others for a range of POC applications – but most diagnostic applications require simultaneous determination of a range of biomarkers and multiplexed assays are difficult to achieve without significant interference between the individual assays. This is where SERS particles may provide some advantages over existing techniques. Cardiac markers are the growing market for point of care technology therefore biomarkers of cardiac injury (Troponin, myoglobin and CRP) have been chosen as a model. The object of the study is to establish the proof of concept multiplexing assay using these chosen biomarkers. Thus, initially all different particles were characterised in single and mixture form. Also development of conjugate chemistry between antibodies for each analyte that have been purchased from commercial sources and SERS particles were analysed using different conditions like buffer, pH and antibody loading concentration to get the optimum intensity. The selected SERS particles and their conjugates were tested for size, aggregation and immune quality using a range of techniques: ultraviolet-visible (UV/Vis) absorption spectroscopy, dynamic light scattering (DLS) and lateral flow assay. These characterisations methodologies gave the understanding of optimum conditions of the each conjugates and individual’s behaviour in mixture conditions as well. After the characterisation all conjugates were tested singularly on the lateral flow assay using buffers and serum. The results of this single analyte immunoassay explained the individual’s bioactivity on the lateral flow strip. Further in study, multiplex assay have been demonstrated in serum. These outcomes have described each candidate characteristic in a mixture form on the lateral flow strip. In order to get the optimum Raman intensity from multiplex assay, the detection and capture antibodies loading concentrations were tuned in the assay. Later on different combinations (high, medium and low concentrations) of all three analytes were analysed and has found some interferences in multiplex assay. To investigate these issues various aspect were considered. First of all, different possibilities of non-specific interactions between the co-analytes and antibodies were tested. In addition, steric hindrance and optical interference investigations were performed via several assays and analysis using Scanning electron microscopy. The outcomes have confirmed related optical interferences. Therefore other assay (wound biomarkers) established to eliminate the interferences. In summary, the works reported here have built and test the equipment and necessary reagents for individual assays before moving on the more complicated task. In addition, the entire study has given a deep knowledge of multiplex assay on a single test line including the investigation of the issues for selected cardiac biomarkers and their applications in the future.
70

Single-Step, Optical Biosensors for the Rapid and Sensitive Detection of Bacterial and Viral Pathogens

Nicolini, Ariana Marie, Nicolini, Ariana Marie January 2016 (has links)
This dissertation discusses the development of inexpensive, easy-to-use, and field-deployable diagnostic techniques and devices for the early detection of various pathogens, commonly found in clinical samples and contaminated food and water. Infectious diseases account for about 90% of world health problems, killing approximately 14 million people annually, the majority of which reside in developing countries. In 2012, the World Health Organization (WHO) published data on the top 10 causes of death across the globe. Although communicable disease is a prevalent cause of fatality, both low-income and high-income countries, pathogen species and transmission are very different. Nearly 60% of deaths in developing countries are caused by food, water, air or blood-borne pathogens. The most prevalent illnesses are diarrheal disease, malaria, and HIV/AIDS. By contrast, the leading causes of death in developed countries (heart disease, cancer, and stroke) are not communicable and are often preventable. However, there is an increasing need for the development of rapid and accurate methods for pathogen identification in clinical samples, due to the growing prevalence of antibiotic-resistant strains. Incorrect, or unneeded antibiotic therapies result in the evolution of extremely aggressive nosocomial (hospital-acquired) infections, such as methicillin- (MRSA) and vancomycin-resistant Staphylococcus aureus (VRSA). The implementation of rapid, easy to use and cost-effective diagnostics will reduce the frequency of pathogen-related deaths in underdeveloped countries, and improve targeted antibiotic treatment in hospital settings, thus decreasing the potential development of more treatment-resistant "super bugs". This research includes novel techniques utilizing two major sensing modalities: serological (i.e. immunological), and nucleic acid amplification testing (NAATs). We first developed a highly sensitive (limit-of-detection = 100 CFU mL-1) particle immunoassay that takes advantage of elastic and inelastic light scatter phenomena, for optical detection of target antigens. This assay is performed upon a unique nanofibrous substrate that promotes multiplexing on a user-friendly platform. We then developed a novel technique, termed emulsion loop-mediated isothermal amplification (eLAMP), in which the target amplicon is detected in real-time, again utilizing light scattering detection and quantification. Both techniques require no sample pre-treatments, and can be combined with smartphone imaging for detection of targets in under 15 minutes. These methods have the potential to improve the speed and sensitivity of early pathogenic identification, thus leading to a reduction in preventative deaths and a decrease in global economic costs associated with infectious disease in clinical and other settings.

Page generated in 0.051 seconds