• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 324
  • 104
  • 56
  • 37
  • 34
  • 13
  • 10
  • 5
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • Tagged with
  • 766
  • 766
  • 141
  • 87
  • 85
  • 79
  • 75
  • 61
  • 56
  • 56
  • 56
  • 55
  • 55
  • 55
  • 54
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
131

The Influence of Osmoreceptors and Baroreceptors on Heat Loss Responses during a Whole-body Passive Heat Stress

Lynn, Aaron January 2011 (has links)
Exercise and/or heat-induced dehydration is associated with decreases in plasma volume (hypovolemia) and increases in plasma osmolality (hyperosmolality), which are thought to stimulate peripheral baroreceptors and central osmoreceptors respectively. Independently, plasma hyperosmolality and baroreceptor unloading have been shown to attenuate sweating and cutaneous vasodilation during heat stress, and therefore, negatively impact body temperature regulation. However, to date little is known regarding the combined influence of plasma hyperosmolality and baroreceptor unloading on thermoefferent activity. Therefore, we evaluated the separate and combined effects of baroreceptor unloading (via lower body negative pressure, LBNP) and plasma hyperosmolality (via infusion of 3% NaCl saline) on heat loss responses of sweating and cutaneous vascular conductance (CVC) during progressive whole-body heating. We show that the combined nonthermal influences of plasma hyperosmolality and baroreceptor unloading additively delay the onset threshold for CVC, relative to their independent effects. In contrast, baroreceptor unloading has no influence on the sweating response regardless of osmotic state. These divergent roles of plasma hyperosmolality and the baroreflex on heat loss responses might serve to enhance blood pressure and body core temperature regulation during dehydration and heat stress.
132

Hypoxia-induced Manipulations of Relative Exercise Intensity do not Alter Steady-state Thermoregulatory Responses or Maximal Heat Loss Capacity During Exercise

Coombs, Geoff January 2016 (has links)
This study sought to determine the independent influence of hypoxia on thermoregulatory responses to exercise in compensable and uncompensable hot conditions. Eight participants completed three experimental trials of cycling in either normoxia (21% O2) or hypoxia (13% O2) in order to manipulate relative exercise intensity (%VO2peak), since VO2peak was reduced by ~30% in hypoxia. When trials were matched for %VO2peak, changes in core temperature and local sweat rates (LSR) were significantly lower in the hypoxic trial as a result of a lower rate of metabolic heat production (Hprod) in order to maintain a similar %VO2peak compared to normoxia. However, when Hprod was fixed between normoxic and hypoxic trials the systematic differences in core temperature and LSR were eliminated. Conversely, at a fixed Hprod skin blood flow (SkBF) was greater in hypoxia compared to normoxia by ~40%. Despite improvements in SkBF, the potential for maximum heat loss was unaffected during an incremental humidity ramp protocol, resulting in no difference between normoxia and hypoxia in the critical ambient vapour pressures at which core temperature inflected upwards. These data further demonstrate, using a within-subjects design, that metabolic heat production, irrespective of large differences in %VO2peak, determines thermoregulatory responses during exercise. Furthermore, this study suggests that the influence of large differences in skin blood flow on heat dissipation may be lesser than previously thought.
133

Effect of Supplemented L-Arginine on Reproductive Parameters of Gestating Mares

Hodge, Lauren B 14 December 2018 (has links)
Studies that have investigated the effects of L-arginine supplementation on blood flow to the uterus have not determined the optimal time of supplementation. No research has been conducted on nitrite concentration in the placenta and blood of mares supplemented with L-arginine. L-arginine is a precursor of NO and therefore, should increase nitrite production both in blood as well as in expelled placenta. Presence of nitrites would also be indicative of increased angiogenesis. No studies have addressed placental efficiency in mares supplemented L-arginine. Placental efficiency is vital for production of a healthy foal. Therefore, to address these short-comings the objectives of this study were to supplement pregnant mares with L-arginine on effects of supplementation at differing time points on blood flow to the uterus, nitrite concentration in blood and placenta, and placental efficiency.
134

Melatonin Implants during Pregnancy on Maternal Hemodynamics and Growth of Offspring in Beef Cattle

McCarty, Keelee Jae 04 May 2018 (has links)
Melatonin is a strong antioxidant that has previously been observed to increase uteroplacental blood flow and increase postnatal calf growth when supplemented during gestation. The objective of the current study was to examine the effects of melatonin implants on uterine blood flow and subsequent offspring growth. Commercial beef heifers and cows were artificially inseminated and assigned to one of two treatment groups supplemented with (MEL) or without (CON) melatonin from days 180 to 240 of gestation. Total uterine artery blood flow was increased in MEL- versus CON-treated cattle. Fetal and birth weight were not different between treatments. However, at castration, body weight was increased in calves from MEL-treated dams compared with CON-treated dams. Further research on placental vascularization and the mechanism in which melatonin impacts angiogenic factors is necessary to understand the relationship between melatonin and compensatory growth that occurs in postnatal offspring.
135

Exercise to Improve Blood Flow and Vascular Health in the Lower Limbs of Paraplegics

Burns, Keith J. 13 August 2015 (has links)
No description available.
136

Erythrocyte flow quantization in capillaries /

Greenwald, Edward Kenneth January 1967 (has links)
No description available.
137

Effects of gonadal steroid hormones on regional blood flow in the brain of conscious rats /

Skelley, Eleanor Bachofen January 1971 (has links)
No description available.
138

Validation of a Noninvasive Blood Perfusion Measurement Sensor

Cardinali, Alex Victor 15 August 2002 (has links)
This work represents the next step in the ongoing development of a system to noninvasively estimate blood perfusion using thermal methods. A combination thermocouple/thermopile sensor records heat flux and temperature measurements on the tissue of interest (in this case skin) for a given period of time. These data, in combination with other experimental parameters, are read into a computer program that compares them to a biothermal finite difference model of the system. The program uses an iterative process incorporating Gauss Minimization to adjust parameters in the biothermal model until the predicted system behavior satisfactorily approximates the real world data. The result is an estimation of blood perfusion in the tissue being measured, as well as an estimate of the thermal contact resistance between the probe and tissue. The system is tested on human forearms, canine legs during laparoscopic spay surgery, and on a canine medial saphenous fasciocutaneous free tissue flap model. Experimental measurements, especially those performed on the tissue flap model, show distinct correlation between blood perfusion and bioprobe output. This research demonstrates the accuracy of the biothermal model and the parameter estimation technique, as well as the usability of the system in a clinical setting. / Master of Science
139

Discrepancy between leg and capillary blood flow kinetics during knee extension exercise

Schlup, Susanna J. January 1900 (has links)
Master of Science / Department of Kinesiology / Thomas Barstow / Previously in our laboratory, capillary blood flow (QCAP) kinetics were found to be significantly slower than femoral artery (QFA) kinetics following the onset of knee extension exercise. If the increase in QCAP does not follow a similar time course to QFA, blood must be flowing into the leg but not to the working muscle. One possible explanation for this discrepancy is that blood flow also increases to the nonworking lower leg muscles. Purpose: To determine if cuffing below the knee alters the kinetics of QFA and QCAP during knee extension exercise, and provide insight into the potential mechanisms controlling the rapid increase in QFA. Methods: Subjects performed a ramp max test to determine the work rate at which gas exchange threshold (GET) occurred. At least four constant work rate trials in each condition were conducted at work rates eliciting ~80% GET. Trials were performed with and without below knee occlusion. Pulmonary gas exchange, near-infrared spectroscopy, QFA and mean arterial pressure (MAP) measurements were taken. Muscle oxygen uptake (VO2m) and deoxy[hemoglobin + myoglobin] were used to estimate QCAP. Conductance (C) was calculated (QFA/MAP) and the percent change from baseline at 60s into exercise was calculated to indicate a time course of change. Results: There was no significant difference between the uncuffed and cuffed conditions (P>0.05). The mean response times (MRT) of QFA were 18.7 ± 14.2s (uncuffed) and 24.6 ± 14.9s (cuffed). QCAP MRTs were 51.8 ± 23.4s (uncuffed) and 56.7 ± 23.2s (cuffed), which were not significantly different from the time constants (τ) of VO2m (39.7 ± 23.2s (uncuffed) and 46.3 ± 24.1s (cuffed)). However, the MRT of QFA was significantly faster (P<0.05) than the MRT of QCAP and τVO2m. τVO2m and MRT QCAP were significantly correlated. The QFA and C percent increase from baseline at 60s were significantly different from MAP but not from each other. Conclusion: Cuffing below the knee did not significantly change the kinetics of QFA, QCAP or VO2m. Estimated QCAP kinetics tracked VO2m following exercise onset, while changes in QFA appeared to be primarily driven by an increase in C, not an increase in MAP.
140

Low load resistance training with blood flow restriction : adaptations and mechanisms in young and old people

Patterson, Stephen January 2011 (has links)
Low load resistance training (LLRT) with blood flow restriction (BFR) is a novel form of exercise that has been demonstrated to increase muscle mass and strength. Combined with the fact that as individuals age they lose both of these parameters, LLRT with BFR has been put forward as a method to help reverse/prevent the associated sarcopenia of ageing. This research investigated the effect the effect of LLRT with BFR on muscle strength firstly in younger people and then an older population group following 4 weeks of training. Muscle function measurements of young and old people included dynamic strength, identified as one repetition maximum (1 RM), isometric strength and isokinetic torque at a range of velocities (0.52 2.09 rad.s-1). Vascular adaptations were also measured using venous occlusion plethysmography to assess rest blood flow (Rbf) and post occlusive reactive hyperemia (PObf). The mechanisms behind any adaptations were measured following acute responses of plasma hormones and growth factors (cortisol, growth hormone (GH), insulin like growth factor 1 (IGF-1), interleukin 6 (IL-6) and vascular endothelial growth factor (VEGF)) as well as local skeletal muscle gene expression (IGF-1Ea and MGF mRNA) to LLRT with BFR. LLRT with BFR increased (P < 0.05) all measurements of muscle strength by 13 30% in both young and older people. PObf was also increased (P < 0.05) following 4 weeks of LLRT with BFR in both population groups. Acute responses to LLRT with BFR identified an increase (P < 0.05) in GH and VEGF in older people. These are similar response to those seen in the young. Finally local gene expression of MGF mRNA was elevated (P < 0.05) 24 hours post LLRT with BFR in both young and older people. Any changes in muscle and blood flow adaptations may be as a result of increased hormones and growth factors at a circulation and local level. Key words: Blood flow restriction, blood flow, muscle strength, growth hormone, IGF-1

Page generated in 0.0472 seconds