• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 111
  • 10
  • 9
  • 9
  • 6
  • 1
  • 1
  • Tagged with
  • 204
  • 204
  • 85
  • 66
  • 49
  • 47
  • 46
  • 44
  • 40
  • 27
  • 22
  • 21
  • 20
  • 19
  • 19
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
121

Monitoring sub-surface storage of carbon dioxide

Cowton, Laurence Robert January 2017 (has links)
Since 1996, super-critical CO$_2$ has been injected at a rate of $\sim$0.85~Mt~yr$^{-1}$ into a pristine, saline aquifer at the Sleipner carbon capture and storage project. A suite of time-lapse, three-dimensional seismic reflection surveys have been acquired over the injection site. This suite includes a pre-injection survey acquired in 1994 and seven post-injection surveys acquired between 1999 and 2010. Nine consistently bright reflections within the reservoir, mapped on all post-injection surveys, are interpreted to be thin layers of CO$_2$ trapped beneath mudstone horizons. The areal extents of these CO$_2$ layers are observed to either increase or remain constant with time. However, volume flux of CO$_2$ into these layers has proven difficult to measure accurately. In addition, the complex planform of the shallowest layer, Layer 9, has proven challenging to explain using reservoir simulations. In this dissertation, the spatial distribution of CO$_2$ in Layer~9 is measured in three dimensions using a combination of seismic reflection amplitudes and changes in two-way travel time between time-lapse seismic reflection surveys. The CO$_2$ volume in this layer is shown to be growing at an increasing rate through time. To investigate CO$_2$ flow within Layer~9, a numerical gravity current model that accounts for topographic gradients is developed. This vertically-integrated model is computationally efficient, allowing it to be inverted to find reservoir properties that minimise differences between measured and modelled CO$_2$ distributions. The best-fitting reservoir permeability agrees with measured values from nearby wells. Rapid northward migration of CO$_2$ in Layer~9 is explained by a high permeability channel, inferred from spectral decomposition of the seismic reflection surveys. This numerical model is found to be capable of forecasting CO$_2$ flow by comparing models calibrated on early seismic reflection surveys to observed CO$_2$ distributions from later surveys. Numerical and analytical models are then used to assess the effect of the proximity of an impermeable base on the flow of a buoyant fluid, motivated by the variable thickness of the uppermost reservoir. Spatial gradients in the confinement of the reservoir are found to direct the flow of CO$_2$ when the current is of comparable thickness to the reservoir. Finally, CO$_2$ volume in the second shallowest layer, Layer~8, is measured using structural analysis and numerical modelling. CO$_2$ in Layer~8 is estimated to have reached the spill point of its structural trap by 2010. CO$_2$ flux into the upper two layers is now $\sim$40\% of total CO$_2$ flux injected at the base of the reservoir, and is increasing with time. This estimate is supported by observations of decreasing areal growth rate of the lower layers. The uppermost layers are therefore expected to contribute significantly to the total reservoir storage capacity in the future. CO$_2$ flow within Layer~9 beyond 2010 is forecast to be predominantly directed towards a topographic dome located $\sim$3~km north of the injection point. This dissertation shows that advances in determining the spatial distribution and flow of CO$_2$ in the sub-surface can be made by a combination of careful seismic interpretation and numerical flow modelling.
122

Is Carbon Sequestration "Good" for the Environment? An Evaluation Based on Current Technology and Methods

January 2012 (has links)
abstract: Carbon capture and sequestration (CCS) is one of the important mitigation options for climate change. Numerous technologies to capture carbon dioxide (CO2) are in development but currently, capture using amines is the predominant technology. When the flue gas reacts with amines (Monoethanaloamine) the CO2 is absorbed into the solution and forms an intermediate product which then releases CO2 at higher temperature. The high temperature necessary to strip CO2 is provided by steam extracted from the powerplant thus reducing the net output of the powerplant by 25% to 35%. The reduction in electricity output for the same input of coal increases the emissions factor of Nitrogen Oxides, Mercury, Particulate matter, Ammonia, Volatile organic compounds for the same unit of electricity produced. The thesis questions if this tradeoff between CO2 and other emissions is beneficial or not. Three different methodologies, Life Cycle Assessment, Valuation models and cost benefit analysis are used to identify if there is a net benefit to the society on implementation of CCS to a Pulverized coal powerplant. These methodologies include the benefits due to reduction of CO2 and the disbenefits due to the increase of other emissions. The life cycle assessment using ecoindicator'99 methodology shows the CCS is not beneficial under Hierarchical and Egalitarian perspective. The valuation model shows that the inclusion of the other emissions reduces the benefit associated with CCS. For a lower CO2 price the valuation model shows that CCS is detrimental to the environment. The cost benefit analysis shows that a CO2 price of at least $80/tCO2 is required for the cost benefit ratio to be 1. The methodology integrates Montecarlo simulation to characterize the uncertainties associated with the valuation models. / Dissertation/Thesis / sima pro / excel sheets / M.S. Civil and Environmental Engineering 2012
123

An Improved Mathematical Formulation For the Carbon Capture and Storage (CCS) Problem

January 2017 (has links)
abstract: Carbon Capture and Storage (CCS) is a climate stabilization strategy that prevents CO2 emissions from entering the atmosphere. Despite its benefits, impactful CCS projects require large investments in infrastructure, which could deter governments from implementing this strategy. In this sense, the development of innovative tools to support large-scale cost-efficient CCS deployment decisions is critical for climate change mitigation. This thesis proposes an improved mathematical formulation for the scalable infrastructure model for CCS (SimCCS), whose main objective is to design a minimum-cost pipe network to capture, transport, and store a target amount of CO2. Model decisions include source, reservoir, and pipe selection, as well as CO2 amounts to capture, store, and transport. By studying the SimCCS optimal solution and the subjacent network topology, new valid inequalities (VI) are proposed to strengthen the existing mathematical formulation. These constraints seek to improve the quality of the linear relaxation solutions in the branch and bound algorithm used to solve SimCCS. Each VI is explained with its intuitive description, mathematical structure and examples of resulting improvements. Further, all VIs are validated by assessing the impact of their elimination from the new formulation. The validated new formulation solves the 72-nodes Alberta problem up to 7 times faster than the original model. The upgraded model reduces the computation time required to solve SimCCS in 72% of randomly generated test instances, solving SimCCS up to 200 times faster. These formulations can be tested and then applied to enhance variants of the SimCCS and general fixed-charge network flow problems. Finally, an experience from testing a Benders decomposition approach for SimCCS is discussed and future scope of probable efficient solution-methods is outlined. / Dissertation/Thesis / Masters Thesis Industrial Engineering 2017
124

Impacts of variable renewable generation on thermal power plant operating regimes

Bruce, Robert Alasdair Wilson January 2016 (has links)
The integration of variable renewable energy sources (VRE) is likely to cause fundamental and structural changes to the operation of future power systems. In the United Kingdom (UK), large amounts of price-insensitive and variable-output wind generation is expected to be deployed to contribute towards renewable energy and carbon dioxide (CO2) emission targets. Wind generation, with near-zero marginal costs, limited predictability, and a limited ability to provide upward dispatch, displaces price-setting thermal power plants, with higher marginal costs, changing flexibility and reserve requirements. New-build, commercial-scale, and low-carbon generation capacity, such as CO2 capture and storage (CCS) and nuclear, may impact power system flexibility and ramping capabilities. Low-carbon generation portfolios with price-sensitive thermal power plants and energy storage are therefore likely to be required to manage increased levels of variability and uncertainty at operational timescales. This work builds on a high-resolution wind reanalysis dataset of UK wind sites. The locations of existing and proposed wind farms are used to produce plausible and internally consistent wind deployment scenarios that represent the spatial distribution of future UK wind capacity. Temporally consistent electricity demand data is used to characterise and assess demand-wind variability and net demand ramp events. A unit commitment and economic dispatch (UCED) model is developed to evaluate the likely operating regimes of thermal power plants and CCS-equipped units across a range of future UK wind scenarios. Security constraints for reserve and power plant operating constraints, such as power output limits, ramp rates, minimum up/down times, and start-up times, ensure the operational feasibility of dispatch schedules. The load factors, time spent at different loads, and the ramping and start-up requirements of thermal power plants are assessed. CO2 duration curves are developed to assess the impacts of increasing wind capacity on the distribution of CO2 emissions. A sensitivity analysis investigates the impacts of part-load efficiency losses, ramp rates, minimum up/down times, and start-up/shut-down costs on power plant operating regimes and flexibility requirements. The interactions between a portfolio of energy storage units and flexible CO2 capture units are then explored. This multi-disciplinary research presents a temporally-explicit and detailed assessment of operational flexibility requirements at full 8760 hour resolution, highlighting the non-linear impacts of increasing wind capacity. The methodological framework presented here uses high spatial-and temporal-resolution wind data but is expected to provide useful insights for other VREbased power systems to mitigate the implications of inadequate flexibility.
125

CFD modelling of post-combustion carbon capture with amine solutions in structured packing columns

Sebastia-Saez, J. Daniel January 2016 (has links)
The scope of the present thesis is the development of a Computational Fluid Dynamics model to describe the multiphase flow inside a structured packing absorber for postcombustion carbon capture. The work focuses mainly on two flow characteristics: the interface tracking and the reactive mass transfer between the gas and the liquid. The interface tracking brings the possibility of studying the liquid maldistribution phenomenon, which strongly affects the mass transfer performance. The development of a user-defined function to account for the reactive mass transfer between phases constitutes the second major concept considered in this thesis. Numerical models found in the literature are divided into three scales due to the current computational capacity: small-, meso- and large-scale. Small-scale has usually dealt with interface tracking in 2D computational domains. Meso-scale has usually been considered to assess the dry pressure drop performance of the packing (considering only the gas phase). Large-scale studies the liquid distribution over the whole column assuming that the structured packing behaves as a porous medium. This thesis focuses on small- and meso-scale. The novelty of this work lies in expanding the capabilities of the aforementioned scales. At small-scale, the interfacial tracking is implemented in a 3D domain, instead of 2D. The user-defined function that describes the reactive mass transfer of CO2 into the aqueous MEA solution is also included to assess the influence of the liquid maldistribution on the mass transfer performance. At the meso-scale, the Volume of Fluid method for interface tracking is included (instead of only the gas phase) to describe flow characteristics such as the liquid hold-up, the interfacial area and the mass transfer. At the theoretical level, this model presents the particularity of including both a mass and a momentum source term in the conservation equations. A comprehensive mathematical development shows the influence of the mass source terms on the momentum equation.
126

Tailoring the Pore Environment of Metal-Organic and Molecular Materials Decorated with Inorganic Anions: Platforms for Highly Selective Carbon Capture

Nugent, Patrick Stephen 28 October 2015 (has links)
Due to their high surface areas and structural tunability, porous metal-organic materials, MOMs, have attracted wide research interest in areas such as carbon capture, as the judicious choice of molecular building block (MBB) and linker facilitates the design of MOMs with myriad topologies and allows for a systematic variation of the pore environment. Families of MOMs with modular components, i.e. MOM platforms, are eminently suitable for targeting the selective adsorption of guest molecules such as CO2 because their pore size and pore functionality can each be tailored independently. MOMs with saturated metal centers (SMCs) that promote strong yet reversible CO2 binding in conjunction with favorable adsorption kinetics are an attractive alternative to MOMs containing unstaurated metal centers (UMCs) or amines. Whereas MOMs with SMCs and exclusively organic linkers typically have poor CO2 selectivity, it has been shown that a versatile, long known platform with SMCs, pillared square grids with inorganic anion pillars and pcu topology, exhibits high and selective CO2 uptake, a moderate CO2 binding affinity, and good stability under practical conditions. As detailed herein, the tuning of pore size and pore functionality in this platform has modulated the CO2 adsorption properties and revealed variants with unprecedented selectivity towards CO2 under industrially relevant conditions, even in the presence of moisture. With the aim of tuning pore chemistry while preserving pore size, we initially explored the effect of pillar substitution upon the carbon capture properties of a pillared square grid, [Cu(bipy)2(SiF6)] (SIFSIX-1-Cu). Room temperature CO2, CH4, and N2 adsorption isotherms revealed that substitution of the SiF62- (“SIFSIX”) inorganic pillar with TiF62- (“TIFSIX”) or SnF62- (“SNIFSIX”) modulated CO2 uptake, CO2 affinity (heat of adsorption, Qst), and selectivity vs. CH4 and N2. TIFSIX-1-Cu and SNIFSIX-1-Cu were calculated to exhibit the highest CO2/N2 and CO2/CH4 adsorption selectivites of the series, respectively. Modeling studies of TIFSIX-1-Cu and SIFSIX-1-Cu suggested that the enhancements in low pressure CO2 uptake and CO2 selectivity in the former arose from the stronger polarization of CO2 molecules by TIFSIX-1-Cu. The stronger framework-CO2 interaction at the primary binding site in TIFSIX-1-Cu correlates with the greater electronegativity of the pillar fluorine atoms relative to those in SIFSIX-1-Cu, and in turn to the higher polarizability of Ti4+ vs. Si4+. The effect of tuning pore size upon the carbon capture performance of pillared square grid nets was next investigated. Linker substitution afforded three variants, SIFSIX-2-Cu, SIFSIX-2-Cu-i, and SIFSIX-3-Zn, with pore sizes ranging from nanoporous (13.05 Å in SIFSIX-2-Cu) to ultramicroporous (3.84 Å in SIFSIX-3-Zn). Single-gas adsorption isotherms showed that SIFSIX-2-Cu-i, a doubly interpenetrated polymorph of SIFSIX-2-Cu with contracted pores (5.15 Å), exhibited far higher CO2 uptake, Qst towards CO2, and selectivity towards CO2 vs. CH4 and N2 than its non-interpenetrated counterpart. Further contraction of the pores afforded SIFSIX-3-Zn, a MOM with enhanced CO2 binding affinity and selectivity vs. SIFSIX-2-Cu-i. Remarkably, the selectivity of SIFSIX-3-Zn towards CO2 was found to be unprecedented among porous materials. Equilibrium and column breakthrough adsorption tests involving gas mixtures meant to mimic post-combustion carbon capture (CO2/N2), natural gas/biogas purification (CO2/CH4), and syngas purification (CO2/H2) confirmed the high selectivities of SIFSIX-2-Cu-i and SIFSIX-3-Zn. Gas mixture experiments also revealed that SIFSIX-3-Zn exhibited optimal CO2 adsorption kinetics. Most importantly, the CO2 selectivity of SIFSIX-2-Cu-i and SIFSIX-3-Zn was minimally affected in the presence of moisture. Modeling studies of CO2 adsorption in SIFSIX-3-Zn (experimental Qst ~ 45 kJ/mol at all loadings) revealed strong yet reversible electrostatic interactions between CO2 molecules and the SIFSIX pillars lining the confined channels of the material. Porous materials based upon the non-covalent assembly of discrete MBBs can also exhibit high surface areas and systematically tunable pore environments. Molecular porous material (MPM) platforms have begun to emerge despite the greater challenge of designing such materials in comparison to MOMs. Herein we report the tuning of pore functionality in an MPM platform based upon an extensive hydrogen-bonded network of paddlewheel-shaped [Cu(ade)4L2] complexes (ade = adenine; L = axial ligand). The substitution of Cl axial ligands with inorganic TIFSIX moieties has produced [Cu2(ade)4(TiF6)2], MPM-1-TIFSIX, a variant with enhanced CO2 separation performance and stability. Single-gas adsorption isotherms reveal that MPM-1-TIFSIX exhibits the highest CO2 uptake and CO2 Qst yet reported for an MPM as well as high selectivity towards CO2 vs. CH4 and N2. Modeling studies indicated strong electrostatic interactions between CO2 and the TIFSIX ligands lining the pores of MPM-1-TIFSIX. In addition to dramatically surpassing MPM-1-Cl with regard to CO2 separation performance, MPM-1-TIFSIX exhibits thermal stability up to 568 K and retains its performance even after immersion in water for 24 hrs. Comprehensively, the results presented herein affirm that porous materials featuring inorganic anions and SMCs can exhibit high and selective CO2 uptake, sufficient stability, and facile activation conditions without the drawbacks associated with UMCs and amines, i.e. competitive water adsorption and high regeneration energy, respectively.
127

Strategic Sustainable Development for the Stationary Power Sector : Is Carbon Capture and Storage a Strategic Investment for the Future?

Chacón, Lisa, Hornblow, Benjamin, Johnson, Daniel, Walker, Chris January 2006 (has links)
An examination of the stationary power sector is performed using The Natural Step framework and Sustainability Principles (SP), in order to aid decision makers in developing policy to balance energy needs while reducing carbon dioxide (CO2) emissions in order to address climate change. Carbon capture and storage (CCS) is evaluated for its sustainability aspects, and is found to be a potentially sustainable approach which can be a bridging technology to a more sustainable energy mix, as well as a remediation technology which can remove CO2 from the atmosphere when utilized in combination with biomass fuel. Initial actions for restructuring the stationary power sector should emphasise demand reduction and efficiency efforts, followed by switching to renewable energy sources. If the first two strategies can not provide sufficient CO2 reductions, then investments in CCS technology may be an appropriate choice. CCS with coal-fired power can be a means to decouple CO2 emissions from fossil fuel use, but other SP violations associated with coal use must also be fully addressed before this strategy can be considered a truly sustainable option.
128

Adéquation de nouvelles compositions d'électrolytes et de revêtements protecteurs nanostructurés de la cathode pour les piles à combustible à carbonates fondus / Adequacy of new electrolyte compositions and nanostructured protective layers for the cathode of molten carbonate fuel cells

Melendez- Ceballos, Arturo 28 April 2017 (has links)
Dans ce travail, nous développons deux grands axes de recherche liés aux carbonates fondus. Le premier est l'optimisation des piles à combustible à base de carbonates fondus, avec deux approches : (i) l'amélioration de la durée de vie de la cathode grâce à des couches ultra-minces d'oxydes métalliques élaborés par la technique de dépôt de couches atomiques; (ii) la modification des électrolytes Li-K et Li-Na par addition de Cs ou de Rb. Le second est consacré à la valorisation du CO2 par sa réduction électrochimique dans les électrolytes à carbonates fondus, où nous analysons la réduction du CO2 par chronopotentiométrie et chronoamperométrie. Finalement, afin de tester les modifications subies par certains des composants analysés dans les deux premières parties, nous avons installé et adapté une configuration de cellule complète couplée à la chromatographie en phase gazeuse. Nous avons obtenu quelques résultats significatifs dans l’ensemble des approches abordées ; en ce qui concerne le point (i), nous avons constaté que TiO2 et CeO2 sont appropriés pour protéger la cathode contre la corrosion sans affecter ses propriétés électrochimiques en réduisant presque de moitié la dissolution du Ni. Les résultats obtenus pour le point (ii) sont également fructueux, car nous avons établi une méthode pour comparer deux électrolytes différents en déterminant les coefficients de diffusion des ions superoxyde et du dioxyde de carbone. Nous avons également comparé les performances de la cathode de NiO dans les électrolytes modifiés avec Cs et Rb. De ces études, nous avons constaté que l'addition de Cs améliore significativement le coefficient de diffusion de CO2 en réduisant la résistance de transfert de charge et la résistance totale à l'électrode, étant l'additif le plus prometteur testé ici. En ce qui concerne la réduction du CO2, nous avons constaté que la réaction implique des espèces adsorbées et instables et se produit en deux étapes à un électron ou une étape à deux électrons ; ainsi, il s’agit très probablement d’un mécanisme de réduction simultanée d’espèces adsorbées et dissoutes. Finalement, nous avons effectué les premiers tests sur cellule complète MCFC dans notre laboratoire, obtenant une performance et une puissance acceptables. Cependant, de petites améliorations sont encore nécessaires pour pouvoir tester les composants modifiés de cellule MCFC. / In this work, we develop two major research routes related to molten carbonates. The first one is the molten carbonate fuel cell optimization, with two approaches: (i) cathode lifetime improvement through ultra-thin layers of metal oxides deposited by atomic layer deposition; (ii) Li-K and Li-Na electrolyte modification by Cs or Rb additions. The second one is dedicated to CO2 valorization through its electrochemical reduction in molten carbonate electrolytes, where we analyze CO2 reduction by means of chronopotentiometry and chronoamperometry. Finally, in order to test some of the component modifications described in the two first parts, we installed and adapted a single-cell setup coupled to gas chromatography. We obtained some significant results in all the approaches; concerning point (i), we found that TiO2 and CeO2 are suitable for cathode corrosion protection without affecting the electrochemical properties of the electrode and reducing almost by half the dissolution of Ni. The results obtained from point (ii) are also fruitful, since we established a method for comparing two different electrolytes and obtained the diffusion coefficients of the superoxides and carbon dioxide. We also compared the performance of the state-of-the-art NiO cathode in Cs and Rb modified electrolytes. From these studies, we found that Cs addition improves significantly the CO2 diffusion coefficient and reduces the charge transfer and total resistance at the electrode, being a promising additive. Regarding CO2 reduction, after all the tests performed, we found that the reaction involves adsorbed and instable species and occurs in two one-electron steps or in two-electron unique step; thus, it follows most probably a mechanism of simultaneous reduction of the adsorbed and dissolved species. Finally, we performed the first MCFC single-cell tests in our laboratory obtaining an acceptable cell performance and output power. However, small improvements are still necessary to be able to test MCFC modified components.
129

Steam Enhanced Calcination for CO2 Capture with CaO

Champagne, Scott January 2014 (has links)
Carbon capture and storage technologies are necessary to start lowering greenhouse gas emissions while continuing to utilize existing thermal power generation infrastructure. Calcium looping is a promising technology based on cyclic calcination/carbonation reactions which utilizes limestone as a sorbent. Steam is present in combustion flue gas and in the calciner used for sorbent regeneration. The effect of steam during calcination on sorbent performance has not been extensively studied in the literature. Here, experiments were conducted using a thermogravimetric analyzer (TGA) and subsequently a dual-fluidized bed pilot plant to determine the effect of steam injection during calcination on sorbent reactivity during carbonation. In a TGA, various levels of steam (0-40% vol.) were injected during sorbent regeneration throughout 15 calcination/carbonation cycles. All concentrations of steam were found to increase sorbent reactivity during carbonation. A level of 15% steam during calcination had the largest impact. Steam changes the morphology of the sorbent during calcination, likely by shifting the pore volume to larger pores, resulting in a structure which has an increased carrying capacity. This effect was then examined at the pilot scale to determine if the phase contacting patterns and solids heat-up rates in a fluidized bed were factors. Three levels of steam (0%, 15%, 65%) were injected during sorbent regeneration throughout 5 hours of steady state operation. Again, all levels of steam were found to increase sorbent reactivity and reduce the required sorbent make-up rate with the best performance seen at 65% steam.
130

Techno-Economic Analysis of Capturing Carbon Dioxide from the Air: Positioning the Technology in the Energy Infrastructure of the Future

January 2020 (has links)
abstract: As the global community raises concerns regarding the ever-increasing urgency of climate change, efforts to explore innovative strategies in the fight against this anthropogenic threat is growing. Along with other greenhouse gas mitigation technologies, Direct Air Capture (DAC) or the technology of removing carbon dioxide directly from the air has received considerable attention. As an emerging technology, the cost of DAC has been the prime focus not only in scientific society but also between entrepreneurs and policymakers. While skeptics are concerned about the high cost and impact of DAC implementation at scales comparable to the magnitude of climate change, industrial practitioners have demonstrated a pragmatic path to cost reduction. Based on the latest advancements in the field, this dissertation investigates the economic feasibility of DAC and its role in future energy systems. With a focus on the economics of carbon capture, this work compares DAC with other carbon capture technologies from a systemic perspective. Moreover, DAC’s major expenses are investigated to highlight critical improvements necessary for commercialization. In this dissertation, DAC is treated as a backstop mitigation technology that can address carbon dioxide emissions regardless of the source of emission. DAC determines the price of carbon dioxide removal when other mitigation technologies fall short in meeting their goals. The results indicate that DAC, even at its current price, is a reliable backup and is competitive with more mature technologies such as post-combustion capture. To reduce the cost, the most crucial component of a DAC design, i.e., the sorbent material, must be the centerpiece of innovation. In conclusion, DAC demonstrates the potential for not only negative emissions (carbon dioxide removal with the purpose of addressing past emissions), but also for addressing today’s emissions. The results emphasize that by choosing an effective scale-up strategy, DAC can become sufficiently cheap to play a crucial role in decarbonizing the energy system in the near future. Compared to other large-scale decarbonization strategies, DAC can achieve this goal with the least impact on our existing energy infrastructure. / Dissertation/Thesis / Doctoral Dissertation Sustainable Engineering 2020

Page generated in 0.0607 seconds