• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 458
  • 114
  • 113
  • 104
  • 13
  • 12
  • 8
  • 6
  • 6
  • 6
  • 6
  • 6
  • 6
  • 5
  • 4
  • Tagged with
  • 1035
  • 252
  • 140
  • 107
  • 96
  • 94
  • 79
  • 70
  • 67
  • 58
  • 57
  • 55
  • 54
  • 47
  • 45
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
351

Paramètres de performances de photo-électrodes de Ti02/Kaolinite et d'électrolytes à base de carbonates biosourcés dans la cellule solaire sensibilisée par la bixine / Performances parameters of TiO2/Kaolinite photo-electrode and biosourced carbonates based electrolyte in bixin-sensitized solar cell

Rahmalia, Winda 11 July 2016 (has links)
Le développement d'un colorant naturel sensibilisateur pour les applications de cellules solaires a attiré beaucoup d'attention en raison de ses avantages inhérents, tels que son faible coût, la préparation simple, les ressources facilement disponibles et le respect de l'environnement. Toutefois, les principaux problèmes liés à la cellule solaire sensibilisée par colorant (CSSC) sont une faible photostabilité et une faible efficacité. Dans cette thèse, la bixine extrait de graines de rocou (Bixa orellana L.) a été utilisée comme sensibilisateur. Pour améliorer sa stabilité et la performance des CSSC, l’utilisation de la kaolinite activée a également été étudiée. Une CSSC à haute efficacité nécessite une photo-électrode avec une grande surface spécifique pour adsorber efficacement le colorant. Ainsi le couple TiO2/kaolinite a été préparé dans ce but. Il est considéré que la kaolinite peut confiner la lumière incidente à l'intérieur de l'électrode et peut aussi améliorer la conduction d'électrons. Dans ce système, la kaolinite a également un rôle important pour accroître la photostabilité de la bixine. Un autre facteur affectant les performances des CSSC est le rôle important de l’électrolyte. Dans ces travaux, les carbonates organiques cycliques qui ont une constante diélectrique élevée et aussi un point d’ébullition élevé (plus de 300oC) ont été évalués comme solvants de l’électrolyte. Ces travaux ont été réalisés en quatre étapes: (1) extraction, purification et caractérisation de la bixine, (2) préparation, activation et caractérisation de la kaolinite, (3) étude d’adsorption de la bixine sur la surface de la kaolinite et du TiO2, et (4) fabrication des cellules solaires sensibilisées par la bixine (CSSB). Les résultats montrent que l’extraction accélérée par solvant en utilisant un mélange de 60% de cyclohexane et 40% d’acétone peut être une méthode d’extraction efficace pour la bixine. Après purification par la chromatographie flash, la bixine est isolée avec un dégré de pureté de 99,86%. Elle est composée de 88,11% de cis-bixine et 11,75% de dicis- bixine. L’activation par l’ammoniaque de la kaolinite calcinée (la métakaolinite) est une bonne méthode pour produire la kaolinite avec une très grande surface spécifique et un rapport Si/Al élevé. L’étude d’absorption de la bixine a montré que le carbonate de diméthyle est un solvant approprié pour la bixine. Il permet à la bixine un coefficient d’absorption élevé et de bonnes caractéristiques d’adsorption sur la surface de la photo-électrode. L’adsorption de monocouche de la bixine sur la surface de TiO2 ou la surface de la kaolinite est plus favorable pour obtenir un rendement énergétique plus élevée. La présence de la métakaolinite activée dans la photo-électrode TiO2 a contribué à améliorer les performances et la stabilité de la CSSB par rapport à la CSSB fabriquée avec la photoélectrode de TiO2 pur. Ces performances sont reproductibles. L’électrolyte exerce un effet synergétique avec la métakaolinite activée en faveur de l’amélioration des paramètres électriques de la CSSB. Sous une intensité lumineuse de 200 W/m2, la CSSB comprenant une photo-électrode de TiO2 modifié par 5% de métakaolinite activée et un système électrolyte de KiI/I2 dans l’acétate de carbonate de glycérol produit un rendement énergétique de (0,050+0,006)%, ce qui est plus élevé que celui de la CSSB comprenant une photo-électrode de TiO2 pur (0,027+0,012)%. L’utilisation d’un couple redox de LiI/I2 dans l’acétate de carbonate de glycérol produit le rendement maximum (0,086+0,014)%. La fonction de stockage et de chargement d’énergie des CSSB fonctionnent bien jusqu’au troisième jour de l’analyse. A ce jour, la CSSB fabriquée en utilisant la photoélectrode de TiO2 modifiée par la métakaolinite activée est 16 fois plus stable que celle de la CSSB fabriquée en utilisant la photo-électrode de TiO2 pur. / The development of natural dye sensitizer for solar cell applications has attracted much attention because of its inherent advantages such as low cost, simple preparation, readily available resources, and low impact in the environment. However, the main problems related to dye-sensitized solar cell (DCCS) are low photostability and low efficiency. In this thesis, the bixin extracted from annatto (Bixa orellana L.) seeds was used as sensitizer. To improve its stability and the performance of the DSSC, the use of activated kaolinite was also studied. A high efficiency DSSC requires a photo-electrode with a high surface area to effectively adsorb the dye. So the couple of TiO2/kaolinite photo-electrode was prepared for this purpose. It is considered that kaolinite can confine the incident light within the electrode and can also improve the conduction of electrons. In this system, kaolinite also has an important role to increase the photostability of bixin. Another factor affecting the performance of DSSC is the important role of the electrolyte. In these studies, cyclic organic carbonates that have a high dielectric constant and also a high boiling point (above 300oC) were evaluated as solvents in the electrolyte. These works were carried out in four stages: (1) extraction, purification and characterization of bixin, (2) preparation, characterization and activation of kaolinite, (3) study of adsorption of bixin on the surface of kaolinite and TiO2, and (4) manufacturing of bixin sensitized solar cell (BSSC). The results show that the accelerated solvent extraction using a mixture of 60% cyclohexane and 40% acetone can be an effective method of extraction for bixin. After purification by flash chromatography, bixin with a degree of purity of 99.86% was isolated. It is composed of 88.11% cisbixin and 11.75% di-cis-bixin. The activation of calcined kaolinite (metakaolinite) by ammonia is a good method to produce kaolinite with very high specific surface area and a higher Si/Al ratio. The absorption study bixin has shown that the dimethyl carbonate is a suitable solvent for bixin. It allows bixin to have a high absorption coefficient and good adsorption characteristics onto the surface of the photo-electrode. The monolayer adsorption of bixin on the surface of TiO2 or kaolinite is more favorable to obtain higher energy efficiency. The presence of activated metakaolinite in the photo-electrode TiO2 has proven to improve the performance and stability of the BSSC compared to the BSSC manufactured with the pure TiO2 photo-electrode. These performances are reproducible. The electrolyte has a synergistic effect with the activated metakaolinite for improving the electrical parameters of the BSSC. Under a light intensity of 200 W/m2, the BSSC including a photo-electrode of TiO2 modified by 5% of the activated metakaolinite and KI/I2 electrolyte system in glycerol carbonate acetate produced an energy efficiency of (0.050+ 0.006)%, which is higher than that of the BSSC comprising a pure TiO2 photoelectrode (0.027+0.012)%. The use of LiI/I2 a redox couple in the glycerol carbonate acetate produces the maximum energy efficiency of (0.086+0.014)%. Its function of energy storage and loading worked well until the third day of analysis. To date, the BSSC manufactured using the photoelectrode TiO2 modified by activated metakaolinite is 16 times more stable than the BSSC manufactured using the pure TiO2 photo-electrode.
352

Substitut osseux injectable, antibactérien et résorbable : études physico-chimiques et biologiques d'un ciment composite à base d'apatite / Injectable, antibacterial and resorbable bone substitute : a physico-chemical and biological study of an apatite-based composite cement

Jacquart, Sylvaine 01 October 2013 (has links)
Ce travail porte sur la recherche et le développement d'un matériau de substitution osseuse permettant une implantation par chirurgie mini invasive, limitant les infections post-opératoires et dont la résorbabilité serait adaptée à la cinétique de régénération osseuse. Nous nous sommes intéressés à un ciment à base de carbonate et de phosphate de calcium (CaCO3 – CaP) dont la réaction de prise conduit à la formation d'une apatite nanocristalline analogue au minéral osseux. Dans une première partie la cinétique de prise et le produit de réaction ont été caractérisés par différentes techniques, notamment la diffraction des RX et les spectroscopies FTIR et RMN du solide. Un sel d'argent – Ag3PO4 ou AgNO3, choisis pour leurs propriétés antibactériennes – a été ensuite introduit dans la formulation. Son effet sur la cinétique de la réaction chimique de prise a été mis en évidence par traitement des spectres FTIR et RMN et un mécanisme réactionnel original impliquant les ions argent et nitrate dans la formation de l'apatite a été proposé. L'ajout d'un polysaccharide, la carboxyméthylcellulose (CMC), dans la phase solide du ciment a montré une très nette amélioration de l'injectabilité de la pâte, avec la disparition du phénomène de séparation des phases qui limite généralement l'injectabilité des ciments minéraux. La résistance à la compression et le module élastique des ciments composites ont été par ailleurs augmentés, parallèlement à une diminution de leur porosité. Différentes études in vitro en présence de cellules ou de bactéries ont enfin été réalisées et ont mis en évidence respectivement la cytocompatibilité des différentes compositions de ciments étudiées et le caractère antibactérien de ces matériaux à partir d'une certaine concentration en argent. L'implantation in vivo de compositions choisies a présenté des résultats très prometteurs quant à la résorbabilité d'un ciment composite CaCO3 - CaP/CMC/Ag et à la néoformation osseuse. / The present work concerns research and development of a material for bone substitution, enabling implantation through a mini-invasive surgery, limiting post-operative infections and whose resorbability is adapted to bone regeneration kinetics. This study focused on a calcium carbonate and phosphate based cement, whose setting reaction leads to the formation of a nanocrystalline apatite, similar to bone mineral. First, the setting kinetics and the reaction products were characterised using different techniques, especially X-ray diffraction and FTIR and solid-state NMR spectroscopies. A silver salt – Ag3PO4 or AgNO3, chosen for their antibacterial properties – was then introduced in the formulation. Its effect on the setting reaction kinetics was revealed by data processing of FTIR and NMR spectra and an original reaction mechanism which involves silver and nitrates in the formation of apatite was proposed. The addition of a polysaccharide, carboxymethylcellulose (CMC), in the solid phase of the cement showed a clear improvement of the injectability of the paste, preventing the occurrence of filter-pressing phenomenon, often limiting the injectability of mineral cements. The resistance to compressive strength and elastic modulus of the composite cement were also improved together with a decrease in their porosity. Different in vitro studies were carried out in the presence of cells or bacteria and demonstrated the cytocompatibility of different cement compositions and their antibacterial properties starting at a certain silver concentration, respectively. In vivo implantation of selected compositions showed promising results concerning resorbability of a composite CaCO3 - CaP/CMC/Ag cement and the associated bone neoformation.
353

Influence of Rock Types on Seismic Monitoring of CO2 Sequestration in Carbonate Reservoirs

Mammadova, Elnara 2011 August 1900 (has links)
Although carbonates hold more than 60 percent of the world's oil reserves, they, nevertheless, exhibit much lower average recovery factor values than terrigenous sandstone reservoirs. Thus, utilization of advanced enhanced oil recovery (EOR) techniques such as high pressure CO2 injection may normally be required to recover oil in place in carbonate reservoirs. This study addresses how different rock types can influence the seismic monitoring of CO2 sequestration in carbonates. This research utilizes an elastic parameter, defined in a rock physics model of poroelasticity and so-­called as the frame flexibility factor, to successfully quantify the carbonate pore types in core samples available from the Great Bahama Bank (GBB). This study shows that for carbonate samples of a given porosity the lower the frame flexibility factors the higher is the sonic wave velocity. Generally, samples with frame flexibility values of <4 are either rocks with visible moldic pores or intraframe porosity; whereas, samples with frame flexibility values of >4 are rocks with intercrystalline and microporosity. Hence, different carbonate pore geometries can be quantitatively predicted using the elastic parameters capable of characterizing the porous media with a representation of their internal structure on the basis of the flexibility of the frame and pore connectivity. In this research, different fluid substitution scenarios of liquid and gaseous CO2 saturations are demonstrated to characterize the variations in velocity for carbonate-specific pore types. The results suggest that the elastic response of CO2 flooded rocks is mostly governed by pore pressure conditions and carbonate rock types. Ultrasonic P-­wave velocities in the liquid-­phase CO2 flooded samples show a marked decrease in the order of 0.6 to 16 percent. On the contrary, samples flooded with gaseous-­phase CO2 constitute an increase in P-­wave velocities for moldic and intraframe porosities, while establishing a significant decrease for samples with intercrystalline and micro-­porosities. Such velocity variations are explained by the stronger effect of density versus compressibility, accounting for the profound effect of pore geometries on the acoustic properties in carbonates. The theoretical results from this research could be a useful guide for interpreting the response of time-­lapse seismic monitoring of carbonate formations following CO2 injection at depth. In particular, an effective rock-­physics model can aid in better discrimination of the profound effects of different pore geometries on seismic monitoring of CO2 sequestration in carbonates.
354

Evaluation of Addition of Alkaline Solutions on Overall Quality and Functionality of Normal and Pale, Soft, and Exudative (PSE) Pork Gels

Garza, Sonia Yvette 2009 December 1900 (has links)
Industry surveys indicated that up to 16percent of pork is pale, soft, and exudative (PSE); which has reduced functionality. Recently, the cost of sodium phosphates (SP) has escalated. SPs are used to improve water holding capacity (WHC), increase pH, and retard lipid oxidation. Alkaline non-meat ingredient addition could improve PSE pork functionality and replace SP in pork products. The objective was to examine effects of alkaline solutions on pH, color, WHC, and texture of PSE and normal pork gels. Normal (pH 5.6-5.9) and PSE (pH ≤ 5.4) loins were obtained and homogenized. Treatment solutions were: no added solution (control); double-distilled deionized water (ddW); 0.1, 0.2, and 0.3 pecent(w/v) SP; and 0.1, 0.2, and 0.3M potassium bicarbonate (PB), sodium bicarbonate (SB), potassium carbonate (PC), or sodium carbonate (SC). PSE gels had lighter color, lower pH, WHC, and cook yields, and higher TPA values than normal gels. Control and ddW gels had lower pH, and higher L*, a*, and b* values. As treatment levels increased, gels had higher pH, and lower L*, a*, and b* values. SP gels had lower pH, WHC, cook yields, and higher L*, a*, b*, and TPA values compared to PB, SB, PC, and SC gels. PC and SC gels had higher cook yields than normal control gels and PB and SB gels were intermediate. For both meat types, TPA values improved for PB and SB gels compared to normal control gels, but did not differ from SP gels. As levels of PC and SC increased, gels were softer, less cohesive, chewy, and lower in work 2 than other gels. Cooked PSE gels treated with 0.2 or 0.3M PC or SC were less red and yellow and had cook yields that surpassed normal control and ddW gels. Normal and PSE gels treated with 0.2 or 0.3M PC or SC did not differ in TPA measurements for hardness and work. PSE pork functionality was improved with PC or SC addition to be similar to or higher than normal samples. PC and SC are feasible alternatives to replace SP in pork gel systems without loss of WHC, color, or pH.
355

Mobility control of CO₂ flooding in fractured carbonate reservoirs using faom with CO₂ soluble surfactant

Zhang, Hang 06 November 2012 (has links)
This work investigates the performance of CO₂ soluble surfactants used for CO₂ foam flooding in fractured carbonate reservoirs. Oil recovery associated with the reduction of CO₂ mobility in fractures is assessed by monitoring oil saturation and pressure drops during injection of CO₂ with aqueous surfactant solution in artificially fractured carbonate cores. Distinct novel CO₂ soluble surfactants are evaluated as well as a conventional surfactant. Water flooding and pure CO₂ injection are conducted as baseline. Characterization of fluids and rock are also reported which include Amott test, oil phase behavior and slim tube test. Transport and thermodynamic properties of surfactant and supercritical CO₂ are used to evaluate the process on a core scale using a commercial reservoir simulator. / text
356

Enhancement of menadione cytotoxicity by bicarbonate: redox cycling and a possible role for the carbonate radical in quinone cytotoxicity

Aljuhani, Naif Saad Unknown Date
No description available.
357

Contribution à l'étude du concrétionnement carbonate des grottes du Sud de la France : morphologie, genèse, diagenèse.

Cabrol, Patrick. January 1978 (has links)
Th. 3e cycle--Hydrogéol.--Montpellier 2, 1978.
358

Nanoporous calcium carbonate-based substrates for the controlled delivery of functional materials

Levy, Charlotte Luanne Victoria January 2017 (has links)
The overall aim of this project was to study 'functionalised' calcium carbonates (FCCs) for use as a carrier for the controlled release of 'actives,' by permeation and diffusion, and is being proposed as an environmentally friendly and non-toxic pharmaceutical excipient, nutraceutical, and flavour carrier. The delivery of a drug to its target site in the appropriate amount and time-frame in order for it to have a controlled release effect whilst achieving the maximum therapeutic effect remains a topic of design and development for novel drug delivery systems. FCCs encompass a family of new pharmaceutical excipients in which the conditions of manufacture follow strict process regulations with respect to the grade of reagents that are employed and the microbiological environment under which they are produced, and include freedom from organic polymers. Adjustments to the FCC production process can be used to produce a wide range of different morphologies, and raise the possibility of tailoring the void structures of the particles to provide controlled release delivery vehicles for actives across many fields, including drugs and flavours. However, such tailoring can only be fully optimised by a fundamental characterisation of the way in which a drug, loaded into an FCC, then flows and diffuses out over a period of time to provide the delayed release. It was found that adsorption on the FCC surface is selective, for example, saccharin does not become adsorbed from 4-(2-hydroxyethyl)piperazine-1-ethanesulfonic acid (HEPES) buffer solution, and neither does anethole from ethanol. FCC also does not adsorb the cationic probe benzyltrimethylammonium bromide (BTMAB) or the anionic probe sodium 2-naphthalenesulphonate (Na2NS). However, it was found that vanillin adsorbs onto the FCC in an amount of 2.00 ± 0.59 mg g^-1. Aspirin and vanillin adsorption from ethanolic solutions with various additions of water onto FCC TP was investigated and fitted with the Tóth isotherm. It was estimated that vanillin adsorbed onto around 17 %, and aspirin onto around 39 %, of the overall FCC TP surface area without the addition of any water. An equation was formulated in order to approximate the adsorption as a function of the FCC's surface coverage by the water. This is discussed in Chapter 4 and has also been published in a peer-reviewed academic journal (Levy et al., 2017). Chapter 5 discusses the preliminary steps of the loading of vanillin and saccharin into FCC, and the results were inconclusive for a majority of samples, concluding that the loading and analysis methods need refining. The modelling of the diffusion profiles of vanillin loaded FCC S07 and S10 was successful, and resulted in diffusion coefficients of 231.9 x 10^-16 m^2 s^-1 and 248.44 x 10^-16 m^ s^-1, respectively. This is outlined in Chapter 6. Chapter 7 describes the 'zero length column' (ZLC) technique, which was used as a way to characterise the diffusivity of the intraparticle pores of each FCC grade. However, it was established that there are many experimental artefacts present with such a method. This work outlines the development of the novel 'finite length column' (FLC), which was developed as a means to overcome the limitations of the ZLC (Levy et al., 2015). Effective diffusivity coefficients in the long-term region of the diffusion curves of the FCC samples range from 1.06-106 x 10 ^-16 m ^2 s^-1. The FLC was then used in preliminary trials to dilute FCC with an inert solid in order to further refine the ZLC technique, and is discussed in Chapter 8. Two mathematical methods were also developed to aid in the refinement. The reported effective diffusivity coefficient for FCC 03 in the long-term region of the diffusion curve is 49.5 x 10^-16 m^2 s^-1. In conclusion, this work confirms that FCC has potential for use as a carrier for the controlled release of 'actives' by diffusion. The utilisation of mathematical modelling in conjunction with experimental methods in the study of drug release and delivery is steadily increasing due to its enormous future potential; it will enable the optimisation of novel dosage forms and the elucidation of release mechanisms at a major reduction in cost and time compared with the number of experimental studies required to do so.
359

Abundance of <i>Archaias angulatus</i> on the West Florida Coast Indicates the Influence of Carbonate Alkalinity over Salinity

Beckwith, Sean Thomas 19 October 2016 (has links)
Archaias angulatus, a large symbiont-bearing foraminifer (Order Miliolida) that produces a Mg-calcite shell, is common throughout the Caribbean and warm western Atlantic region. This species lives abundantly in seagrass beds along the Springs Coast of northwest Florida (up to 4 adults per gram of sediment) where spring-fed rivers emerge from a limestone aquifer, and in Florida Bay to the southeast (25 adults/g) where the sediment is primarily biogenic carbonate. In contrast, live specimens are seldom found in the seagrass beds along the central-west coast of Florida, where barrier islands are dominated by quartz sand. My working hypothesis is that substratum and carbonate chemistry, in addition to temperature and salinity, explain differences in abundance of A. angulatus associated with the seagrass meadows along the west Florida coastline and shelf. Water chemistry measurements were taken diurnally over 1-2 day periods at four sites in winter, spring and autumn of 2015. Salinity and temperature were measured in situ, and sealed bottles of seawater were transported to the laboratory for analysis of Dissolved Inorganic Carbon (DIC) and Total Alkalinity (TA). The highest TA was found in the Springs Coast (2766 μmol/kg-seawater, three-season average), along with the lowest salinities, which reveals a strong contribution from the nearby rivers, springs and seeps. A TA end-member regression analysis predicts, and sampling confirms, TA increases with proximity to the river mouth, highlighting the atypical relationship between alkalinity and salinity in this carbonate province. A gradient in the value of TA was seen among the northern three sites, with TA decreasing from the Springs Coast site southward to Fort Desoto; additionally, the pH and calcium carbonate saturation states were higher at the northernmost sites. The highest ratio of TA to DIC among all four sites was found at the southern edge of the Springs Coast, reflecting strong primary production and DIC uptake by the dense meadows of seagrass in the area. A daytime increase in the TA to DIC ratio was seen at all sites; however, the Springs Coast site (~5km from the Weeki Wachee river mouth) exhibited stronger tidal influences on TA and DIC than diurnal influences. Plots of salinity-normalized TA and DIC indicate the Weeki Wachee coastal area is impacted by calcification and dissolution to a greater extent than by photosynthesis and respiration. The gradual relief off the Springs Coast, as well as clarity of the water column, provide ideal physical habitat, and the input from spring-fed sources enhances the water chemistry for calcifying organisms. Presence of A. angulatus in low salinity waters influenced by high alkalinity riverine discharge led to a new hypothesis that calcification in A. angulatus requires high carbonate alkalinity but not necessarily full marine salinity.
360

The North Break Zone of the late Precambrian Otavi carbonate platform sequence in Namibia: stratigraphic setting, petrography and relationship with Tsumeb Cu-Pb-Zn deposit

Theron, Salomon Johannes 24 April 2014 (has links)
M.Sc. (Geology) / The main objective of this study was to characterize the North Break Zone of the Otavi Mountain Land, Namibia in terms of stratigraphy and petrography and to investigate its relationship with the Tsumeb ore body and other mineralized prospects in the immediate vicinity of Tsumeb. The Late Proterozoic Otavi carbonate platform sequence is famous for its base metal deposits. The North Break Zone is a stratabound zone of sporadic mineralization, brecciation and silicification occurring in the lower part of Iithozone T6 of the Hoffenberg Formation (Tsumeb Subgroup). It intersects the pipe-like Tsumeb Cu-Pb-Zn-Ag ore body at a depth of about 900m below surface. Where the North Break Zone intersects the Tsumeb ore body large massive ore associated with calcitized dolomite, dolomite breccia as well as feldspathic sandstone lenses occur. These features extend along strike and dip outside the normal dimensions of the Tsumeb ore body. The genesis of the Tsumeb ore body is poorly understood. The conventional model is that meteoric fluids circulated through the so-called North Break Zone paleo-aquifer, dissolving carbonate and giving rise to solution collapse and eventually the creation of the Tsumeb karst pipe. However, no direct evidence is available to support this model. This study was devised to critically evaluate the relationship between the North Break Zone and formation of the Tsumeb ore body. The study entailed field mapping, detailed sampling of the stratigraphic sequence and ore bodies, white light, reflected light, UV/blue light and cathodoluminescence petrography. Cathodoluminescence proved to be the most effective petrographic tool for differentiating various carbonate phases. The North Break Zone is defined as a 10 to 14m thick chert free oolitic to intraclastic dolomitic grainstone, stromatolite and mudstone unit, in which discontinuous lenses of mineralized secondary quartz are present. It is interbedded with dark grey cherty micritic dolomite of Lithozone T6 of the HOffenberg Formation. Minor calcification, Cu-Pb-Zn mineralization and manganese and iron enrichment are associated with the quartz-rich bodies. The mineralized quartz bodies are only present up to 2.5km to the west and 2.6km to the east of the Tsumeb ore body. The petrographic study indicated that 1) the epigenetic sequence of carbonate alteration, precipitation of new carbonate phases and mineralization is virtually identical in all Cu-Pb-Zn occurrences and 2) that the mineralization is closely associated with Mn-bearing brightly luminescent (CL) carbonates. Earlier Cu-Pb-Zn sulphide mineralization is associated with Mn-bearing bright red luminescent sparry dolomite (dolomite IIIB). Late stage Cu-arsenate, oxide and silicate mineralization is associated with an episode of Mn-bearing bright yellow luminescent calcite (calcite II) which also causes dolomitization of the associated dolomites. A very simple paragenetic model of mineralization is proposed. The earliest is defined by pre-mineralization calcite (calcite I) vein formation with associated dolomitization. This phase is followed by deposition of kerogen luminescent Mn-bearing dolomite IIIB - quartz and Cu-Pb-Zn sulphides representing the main mineralization event. It is followed by a late mineralization event composed of Mn-bearing calcite (calcite II) with associated Cu-arsenates, oxides and silicates. Supergene alteration is represented by the precipitation of very late stage non-luminescent Mn and Fe-poor calcite (calcite III) and quartz without any associated Cu-Pb-Zn mineralization. The sequence of mineralization is explained by the evolution of a single hydrothermal fluid, from relatively cold to hot and then back to cold, during a major period of fluid migration through the carbonate platform sequence. The North Break Zone probably never acted as a paleo-aquifer for fluids that formed the Tsumeb ore body. Rather hydrothermal fluids moved from the Tsumeb ore body into the North Break Zone. Hydrothermal fluids may have been derived from the Damara orogen to the south of Tsumeb during a period of tectonic loading and thrust deformation.

Page generated in 0.0402 seconds