• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 60
  • 11
  • 7
  • 5
  • 2
  • Tagged with
  • 117
  • 117
  • 47
  • 36
  • 25
  • 23
  • 20
  • 17
  • 17
  • 15
  • 13
  • 13
  • 13
  • 12
  • 12
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

Development of an Equation Independent of Manning's Coefficient n for Depth Prediction in Partially-Filled Circular Culverts

Mangin, Steven F. 11 October 2010 (has links)
No description available.
42

Universal Velocity Distribution for Smooth and Rough Open Channel Flows

Pu, Jaan H. January 2013 (has links)
Yes / The Prandtl second kind of secondary current occurs in any narrow channel flow causing velocity dip in the flow velocity distribution by introducing the anisotropic turbulence into the flow. Here, a study was conducted to explain the occurrence of the secondary current in the outer region of flow velocity distribution using a universal expression. Started from the basic Navier-Stokes equation, the velocity profile derivation was accomplished in a universal way for both smooth and rough open channel flows. However, the outcome of the derived theoretical equation shows that the smooth and rough bed flows give different boundary conditions due to the different formation of log law for smooth and rough bed cases in the inner region of velocity distribution. Detailed comparison with a wide range of different measurement results from literatures (from smooth, rough and field measured data) evidences the capability of the proposed law to represent flow under all bed roughness conditions.
43

Investigation of open channel flow with unsubmerged rigid vegetation by the lattice Boltzmann method

Jing, H., Cai, Y., Wang, W., Guo, Yakun, Li, C., Bai, Y. 10 September 2019 (has links)
Yes / Aquatic vegetation can significantly affect flow structure, sediment transport, bed scour and water quality in rivers, lakes, reservoirs and open channels. In this study, the lattice Boltzmann method is applied for performing the two dimensional numerical simulation of the flow structure in a flume with rigid vegetation. A multi-relaxation time model is applied to improve the stability of the numerical scheme for flow with high Reynolds number. The vegetation induced drag force is added in lattice Boltzmann equation model with the algorithm of multi-relaxation time in order to improve the simulation accuracy,. Numerical simulations are performed for a wide range of flow and vegetation conditions and are validated by comparing with the laboratory experiments. Analysis of the simulated and experimentally measured flow field shows that the numerical simulation can satisfactorily reproduce the laboratory experiments, indicating that the proposed lattice Boltzmann model has high accuracy for simulating flow-vegetation interaction in open channel. / National Natural Science Foundation of China (grant number: 11861003 and 11761005)
44

Self-aeration development and fully cross-sectional air diffusion in high-speed open channel flows

Wei, W., Xu, W., Deng, J., Guo, Yakun 22 March 2022 (has links)
Yes / Self-aeration in open channel flows occurs owing to free surface air entrainment. Self-aeration development and fully cross-sectional distribution of air concentration are not thoroughly understood. In the present study, an analytical solution for the averaged cross-sectional air concentration in the gradually varying region is established using a simplified mechanism of free surface air entrainment. For a fully cross-sectional distribution of air concentration affected by the channel bottom, a model of a diffusion region without wall restraint is proposed, and two situations are classified based on averaged cross-sectional air concentration. Good agreement between measured data and calculations is obtained, and the computational accuracy of the air concentration distribution near the wall is improved. The results reveal that the channel slope determines the air entrainment quantity, while water flow discharge determines the self-aeration evolution distance. The solutions for the averaged cross-sectional air concentration and the effect of the bottom wall on air diffusion promote air–water flow applications in hydraulic engineering practices. / This work was supported by National Natural Science Foundation of China [grant numbers 51939007, 51979183]; Sichuan Province Science and Technology support program [grant number 2019JDTD0007].
45

A Generalized Log-Law Formulation For a Wide Range of Boundary Roughness Conditions Encountered in Streams

Plott, James Read 27 September 2012 (has links)
It is demonstrated that the method for locating a velocity profile origin, or plane of zero velocity, by fitting log profiles to streamwise velocity measurements is applicable to a larger range of roughness scales than previously expected. Five different sets of detailed, experimental velocity measurements were analyzed encompassing sediment-scale roughness elements, roughness caused by rigid vegetation, and large-scale roughness elements comprised of mobile bedforms. The method resulted in similar values of normalized zero-plane displacement for all roughness types considered. The ratios of zero-plane displacement, dh, to roughness height, ks, were 0.20 and 0.26 for the sediment- and vegetation-scale experiments, respectively. The results for the two experiments with bedform dominated roughness were 0.34 and 0.41. An estimate of dh/ks ranging from 0.2 to 0.4 is therefore recommended for a range of roughness types with the higher end of the range being more appropriate for the larger, bedform-scale roughness elements, and the lower end for the sediment-scale roughness elements. In addition, it is demonstrated that the location of the plane of zero velocity is temporally constant even when the bed height is not. The effects of roughness element packing density were also examined with the identification of a possible threshold at 4%, above which zero-plane displacement is independent of packing density. The findings can be applied to field velocity measurements under mobile bed conditions, facilitating the calculation of turbulence parameters such as shear velocity, by using point measurements and providing guidelines for the estimation of an appropriate value for zero-plane displacement. / Master of Science
46

Investigation of Fouling in Wavy-Fin Exhaust Gas Recirculators

Krishnamurthy, Nagendra 21 May 2010 (has links)
This dissertation presents a detailed account of the study undertaken on the subject of fouling of Exhaust Gas Recirculator (EGR) coolers. The fouling process in EGR coolers is identified to be due to two primary reasons — deposition of fine soot particles and condensation of hydrocarbons known as dry soot and wet soot fouling, respectively. Several numerical simulations are performed to study the fouling process. Preliminary analysis of the particle forces for representative conditions reveal that drag, thermophoresis and Brownian forces are the significant transport mechanisms and among them, the deposition process is dominated by thermophoresis. Soot deposition in a representative turbulent plain channel shows a direct relationship of the amount of deposition with the near-wall temperature gradient. Subsequently, periodic and developing flow simulations are performed on a wavy channel geometry, a common EGR design for various Reynolds numbers and thermal boundary conditions. Constant heat flux boundary condition is used in the periodic fully-developed calculations, which assist in establishing various deposition trends. The wavy nature of the walls is noted to affect the fouling process, resulting in specific deposition patterns. For the lower Reynolds number flows, significantly higher deposition is observed due to the higher particle residence times. On the other hand, the developing flow calculations facilitate the use of wall temperature distributions that typically exist in EGR coolers. The linear dependence of the amount of deposition on the near-wall temperature gradient or in other words, the heat flux, is ascertained. It is also observed in all the calculations, that for the sub-micron soot particles considered, the deposition process is almost independent of the particle size. In addition, the nature of the flow and heat transfer characteristics and the transition to turbulence in a developing wavy channel are studied in considerable detail. Finally, a study on the condensation of heavy hydrocarbons is undertaken as a post-processing step, which facilitates the prediction of the spatial distribution and time-growth of the combined fouling layer. From the calculations, the maximum thickness of the dry soot layer is observed to be near the entrance, whereas for the wet soot layer, the peak is found to be towards the exit of the EGR cooler. Further, parametric studies are carried out to investigate the effect of various physical properties and inlet conditions on the process of fouling. / Master of Science
47

Experimental Investigation of the Role of Turbulence Fluctuations on Incipient Motion of Sediment

Celik, Ahmet Ozan 08 September 2011 (has links)
The movement of granular material along a streambed has been a challenging subject for researchers for more than a century. Predicting the limiting case of nearly zero bedload transport, usually referred to as threshold of motion or critical condition, is even more challenging due to the highly fluctuating nature of turbulent flow. Numerous works have advocated that the peak turbulent forces, randomly occurring in time and space with magnitudes higher than the average, initiate the bed material motion. More recent findings have shown that not only the magnitude of the peak turbulent forces acting on individual grains but their duration as well have to be considered for determining the incipient conditions. Their product, or impulse, is better suited for specifying such conditions. The goal of this study was to investigate the mechanism responsible for initiation of sediment motion under turbulent flow conditions. The impulse concept was investigated by utilizing appropriate measurement methods in the laboratory for determining the condition of incipient motion. The experimental program included measurements of particle entrainment rates of a mobile grain and turbulence induced forces acting upon a fixed grain for a range of flow conditions. In addition, near bed flow velocities were measured synchronously with both the entrainment and pressure measurements at turbulent resolving frequencies. Results of this work covered the limitations and uncertainties associated with the experimental methods employed, and the description of the inadequacies of existing incipient motion models via the impulse framework. The extreme sensitivity of bed material activity to minute adjustments in flow conditions was explained by the associated change in the frequency of impulse events. The probability density function proposed for impulse was used together with the critical impulse to estimate the particle entrainment rate for a range of flow conditions. It was shown that the impulse events with potential to dislodge the grain were occurring mostly during sweep type of flow structures. The impulse events were also typically accompanied by positive lift forces. The force patterns showed that the positive peaks in the lift consistently occurred before and after the impulse events in the drag force. The magnitude of these lift forces were significantly higher in the wake of a cylinder compared to that of uniform flow conditions. The time average lift force in the wake of a cylinder was also observed to be positive with magnitudes reaching more than 30% of the submerged weight of the particle. The cylinder caused the downstream turbulence intensity to increase slightly but the particle entrainment rate to increase significantly. This finding provided a physically based explanation for the modification of turbulent force fluctuations and resulting changes in the particle movement rates by such unsteady flow conditions. / Ph. D.
48

Development and application of a dispersed two-phase flow capability in a general multi-block Navier Stokes solver

Shah, Anant Pankaj 04 January 2006 (has links)
Gas turbines for military applications, when operating in harsh environments like deserts often encounter unexpected operation faults. Such performance deterioration of the gas turbine decreases the mission readiness of the Air Force and simultaneously increases the maintenance costs. Some of the major factors responsible for the reduced performance are ingestion of debris during take off and landing, distorted intake flows during low altitude maneuvers, and hot gas ingestion during artillery firing. The focus of this thesis is to study ingestion of debris; specifically sand. The region of interest being the internal cooling ribbed duct of the turbine blade. The presence of serpentine passages and strong localized cross flow components makes this region prone to deposition, erosion, and corrosion (DEC) by sand particles. A Lagrangian particle tracking technique was implemented in a generalized coordinate multi-block Navier-Stokes solver in a distributed parallel framework. The developed algorithm was validated by comparing the computed particle statistics for 28 microns lycopodium, 50 microns glass, and 70 microns copper with available data [2] for a turbulent channel flow at Ret=180. Computations were performed for a particle-laden turbulent flow through a stationary ribbed square duct (rib pitch / rib height = 10, rib height / hydraulic diameter = 0.1) using an Eulerian-Lagrangian framework. Particle sizes of 10, 50, and 100 microns with response times (normalized by friction velocity and hydraulic diameter) of 0.06875, 1.71875, and 6.875 respectively are considered. The calculations are performed for a nominal bulk Reynolds number of 20,000 under fully developed conditions. The carrier phase was solved using Large Eddy Simulation (LES) with Dynamic Smagorinsky Model [1]. Due to low volume fraction of the particles, one-way fluid-particle coupling was assumed. It is found that at any given instant in time about 40% of the total number of 10 micron particles are concentrated in the vicinity (within 0.05 Dh) of the duct surfaces, compared to 26% of the 50 and 100 micron particles. The 10 micron particles are more sensitive to the flow features and are prone to preferential concentration more so than the larger particles. At the side walls of the duct, the 10 micron particles exhibit a high potential to erode the region in the vicinity of the rib due to secondary flow impingement. The larger particles are more prone to eroding the area between the ribs and towards the center of the duct. At the ribbed walls, while the 10 micron particles exhibit a fairly uniform propensity for erosion, the 100 micron particles show a much higher tendency to erode the surface in the vicinity of the reattachment region. The rib face facing the flow is by far the most susceptible to erosion and deposition for all particle sizes. While the top of the rib does not exhibit a large propensity to be eroded, the back of the rib is as susceptible as the other duct surfaces because of particles which are entrained into the recirculation zone behind the rib. / Master of Science
49

Sediment removal from urban runoff using seep berms and vegetative filtration

Hamade, Firas Nadim 13 January 2014 (has links)
Previous field demonstration projects in metro-Atlanta have shown that seep berms, which are elongated sedimentation basins at the outlet of a disturbed land area, can provide high suspended sediment trap efficiencies with respect to coarse sediments on construction sites having drainage areas greater than five acres. Previous literature has shown that vegetative filter strips are efficient traps for fine suspended sediment in stormwater runoff. A combination of a seep berm and vegetative filter in series was studied in this thesis as an erosion control measure with quantification of its flow resistance and sediment removal efficiency. First, a field demonstration project was implemented to evaluate seep berms as a viable erosion control measure through a side-by-side comparison with the more commonly-used silt fences on construction sites with drainage areas less than five acres in metro Atlanta. High suspended sediment trap efficiencies were recorded for the seep berm on two separate sites, and the seep berm was shown to be superior to silt fences with respect to sediment control in the site runoff. Then a vegetative filter was studied in the laboratory in a specially-built flume for that purpose. The relationship between vegetative drag coefficient and various parameters reflecting flow conditions and vegetation density in steady, uniform open channel flow was studied in the flume. Both rigid, emergent vegetation and submerged, flexible vegetation were studied at two different plant densities. The application of porous media flow concepts to open channel flow through vegetation resulted in a collapse of data for vegetative drag coefficient for the various vegetation types and densities into a single relationship when plotted against vegetative stem Reynolds number. Point velocity and turbulence intensity profiles at different locations in the vegetative filter were recorded with an acoustic Doppler velocimeter to observe the turbulence structure of the flow and its effects on vegetative drag and settling of sediment. A sediment slurry consisting of a suspension of fine sand was fed into the flume, and an automated sampler was used to measure suspended sediment concentrations along the vegetative filter length for a series of discharges from which sediment flux and trap efficiency could be determined. Experimental data for trap efficiency were plotted against a dimensionless settling efficiency for each type of vegetation and density. These relationships, along with the one developed for the coefficient of drag, were applied in a numerical design technique that allows designers to determine the flow depth, velocity and trap efficiency of a vegetative filter of known dimensions for a given flow rate, sediment grain size distribution, slope, and vegetation density. In a typical design example, the combined trap efficiency proved that a seep berm followed by a vegetative filter can be a very effective erosion control measure.
50

Turbulent flow around bluff bodies at the floodplain edge

Heatlie, Fiona January 2010 (has links)
This thesis examines the flow around bluff bodies placed at the floodplain edge in a compound, open channel. The floodplain edge location is associated with a strong shear layer between lower velocity floodplain flow and high velocity flow in the main channel. The drag force exerted by a bluff body is dependant on the way in which the flow separates around the body and subsequently recovers but the drag coefficients typically used to represent the effects of bluff bodies are based on experiments on bodies in geometrically simple channels. The differences induced in the wake structures and therefore in the drag coefficients of bluff bodies when they are placed in the shear layer at the floodplain edge are little understood. In this study, experimental data is gathered that allows direct comparison of the wakes of identical bluff bodies, both emergent (surface-piercing) and submerged, in simple and compound open channels. For the compound channel scenarios, for both single and multiple block arrangements, turbulence data is also reported. These results are augmented using a computational model based on the solution of the 3D Reynolds Averaged Navier Stokes equations, using a non-linear turbulence model. The results show that the changes induced in the wake structures due to their location at the floodplain edge of the compound channel can have a significant effect on the drag coefficient. For the emergent bodies, the proximity of the deep main channel flow is shown to impact in a complex manner upon the processes of reattachment and re-separation, changing the formation of vorticity in the wake. For the submerged bodies, this is complicated by asymmetry in the same processes on the block top. For both body types, separation on the main channel side results in the creation of a strong axial circulation at the floodplain edge and the decay of the wake is asymmetrically affected by the differing behaviour of the turbulence on the two sides.

Page generated in 0.0991 seconds