• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 6
  • 1
  • 1
  • Tagged with
  • 11
  • 11
  • 7
  • 6
  • 5
  • 4
  • 4
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

The Role of Instantaneous Forces in Particle Movement

Greer, Krista 02 October 2006 (has links)
Many methods and equations have been developed to predict bed load transport rates, most of which use some comparison between shear stress and critical shear stress. The critical shear stress is determined by the point of incipient motion. Researchers have attempted to predict bed load transport both deterministically with mean parameters and stochastically attempting to take into account the fluctuations of velocity at points near threshold. This work attempts to show that more than simple force balances are needed to determine the point at which a particle will move. Turbulent fluctuations in velocity seem to have an effect of particle entrainment. The fluctuations in velocity can be several times greater than their time averaged counterparts. These short durations of high velocity often result in particle movement even though the mean flow may be less than or very near critical conditions. Through experiments of a single spherical particle on a simple bed geometry in air without the effects of water, it is shown that time duration of force has an effect on entrainment. This shows that there may be a constant force-time combination, or impulse, required to entrain sediment. / Master of Science
2

Sediment Transport Impacts Upon Culvert Hydraulics

Goodridge, Wade H. 01 May 2009 (has links)
Sedimentation buildup and accumulation can cause serious impediments to the hydraulic capacity of culvert systems. There has not been any significant research to date regarding the behavior of bed load transport nor the implications of bed forms upon the hydraulics associated with culvert flow. The primary objective of this study was to investigate how sediment transport occurs in a culvert and to then develop a methodology and test setup to successfully investigate this sediment transport. The investigation was limited to studying culvert and pipeline transport of alluvial material in sand and gravel sizes. This dissertation develops a semi-empirical bed load transport equation from existing open channel flow models to be used in predicting sediment yields in culvert applications. Incipient motion and critical shear stresses were investigated for application into eight empirically based models. The methods analyzed include the Meyer-Peter Müller, Engelund and Hansen, Shields, Toffaleti (as seen in the United States Army Corps of Engineers program HEC RAS), Schoklitsch, DuBoy, Yang, and Rottner methods. These methods were tested for predictive accuracy to physically modeled bed load transport data obtained from a 304.8 mm (11.89 in) diameter culvert. Tests involved fully pressurized, partially pressurized inlet controlled, and open channel flow regimes for a variety of bed elevations and bedforms. Bedform regime and associated resistance impacts on flow energy were presented to better understand their hydraulic consequence in culvert applications. An extensive literature review regarding sediment transport in both open channel and closed conduit applications is provided to develop a foundation of knowledge to pursue further research in this area. This literature review summarizes the current body of scientific knowledge that is applicable to sediment transport in culverts. Investigations into both historical and current works are cited throughout this studies literature review. A tested methodology is presented for the investigation of sediment bed load transport in culvert applications. Development of a procedure for the testing of critical shear limits and bed load transport is outlined. A detailed application example is provided. Recommended changes in testing techniques and physical model are made for the next generation of culvert sediment transport research.
3

The effect of Lake Erie water level variation on sediment resuspension

Dusini, Douglas S. 29 March 2005 (has links)
No description available.
4

Incipient motion of riprap on steep slopes

Langmaak, Kai Rainer 12 1900 (has links)
Thesis (MEng)--Stellenbosch University, 2013. / ENGLISH ABSTRACT: Riprap is commonly used as an erosion protection measure around the world. In some cases, for example when constructing bed arrestors, riprap has to be designed to be stable on steep slopes. The literature shows that the problem of incipient motion is reasonably well understood, but existing hydraulic design methods are found to be largely unreliable. The main objective of this study is to improve the understanding of the different factors affecting incipient motion in order to furnish the prospective design engineer with a reliable method for sizing riprap on steep slopes adequately. Eight existing theories dealing with the threshold of incipient motion are reviewed, of which Liu’s work (1957) seems most promising. Naturally, the required median rock diameter of the riprap is reasonably large (due to the steep slopes), with high particle Reynolds numbers. However, little data is available for these flow conditions. Data collected from 12 large scale laboratory tests carried out for this research indicate that the dimensionless Movability Number is in fact constant for large particle Reynolds numbers. For design purposes, the recommended Movability Number which emerged from this study is 0.18, provided that the steep bed slope is taken into account, and that the theoretical settling velocity is calculated using an accurate drag coefficient and the d90 sieve size. A comparison of the laboratory data with design equations showed that a large variety of results are obtained, which supports the need for this study. Finally, it was shown that a calibrated one dimensional hydrodynamic model can be used by the practicing engineer to extract the hydraulic properties needed for applying Liu’s theory. It was found that the ratio ks/d90 = 0.81 may be applied to estimate the bed roughness for the grading used in this study. / AFRIKAANSE OPSOMMING: Stortklip is ‘n metode wat wêreldwyd gebruik word om erosie te voorkom. In sommige gevalle, byvoorbeeld vir die konstruksie van erosietrappe, moet stortklip teen steil hellings spesifiek ontwerp word om stabiliteit te verseker. Die literatuur beskryf die probleem van aanvanklike beweging redelik goed, maar dit is bevind dat die bestaande ontwerpmetodes grotendeels onbetroubaar is. Die hoofdoelwit van hierdie ondersoek was om die faktore wat beweging van stortklip veroorsaak, beter te verstaan en ‘n betroubare metode te ontwikkel wat ’n ingenieur kan aanwend om stortklipbeskerming wat op steil hellings geplaas word te ontwerp. Agt verskillende metodes wat die begin van beweging beskryf is bestudeer, en dit wil voorkom asof die Liu teorie van 1957 die grootste potensiaal het. As gevolg van die steil hellings wat ondersoek word, is die benodigde klipgroote redelik groot wat weereens die oorsaak is vir ‘n hoë deeltjie Reynolds getal is. In die literatuur kon geen data gevind word vir so ‘n vloeitoestand nie. Daarom is 12 laboratoriumtoetse gedoen en daar is gevind dat die Mobiliteitsgetal redelik konstant is vir groot deeltjie Reynoldsgetalle. Vir onwerpdoeleindes word ‘n Mobiliteitsgetal van 0.18 aanbeveel, met die voorwaarde dat die bodemhelling in ag geneem word, en dat die teoretiese valsnelheid bereken word met die d90 klipgroote en ‘n akkurate sleurkoëffisiënt. Verder is gevind dat die labaratorium data die voorspellings van die bestaande ontwerpvergelykings nie bevredigend pas nie. Dit ondersteun die behoefte vir hierdie studie. Om die bogenoemde bevindings vir praktiese probleme bruikbaar te maak, is daar gewys dat ‘n gekalibreerde een dimensionale hydrodinamiese rekenaarmodel gebruik kan word om die nodige hidrouliese eienskappe te verkry om die Liu teorie toe te pas. Dit is bevind dat die verhouding ks/d90 = 0.81 ‘n goeie benadering vir die hidrouliese ruheid kan voorsien.
5

Initiation Of Motion Of Coarse Solitary Particles On Rough Channel Beds

Kucuktepe, Omer Ilker 01 December 2009 (has links) (PDF)
In this study the incipient motion of coarse solitary particles on channel beds having different roughness heights was experimentally investigated. The experiments were conducted in a tilting flume of a rectangular cross-section having a working length of 12 m and a rough bed composed of at least 2 layers of coarse gravel of almost constant size. The roughness material of the channel bed was changed three times. The slope of the channel bed and the discharge are two main parameters that determine the initiation of motion of a given particle. The artificial particles tested in the experiments were obtained by mixing cement and iron dust at certain ratios. Dimensionless hydraulic parameters determined from theoretical analysis were related to each other. Flow depths, velocity profiles were measured and flow conditions that represent the critical conditions of initiation of motion were expressed in terms of critical velocities and shear velocities. The results were compared with the previous studies&rsquo / results.
6

Effect of Seepage on Incipient Motion and Rheology of Cohesionless Soil / 非粘着性土の初期移動過程に対する浸透の影響とレオロジー特性

Jewel, Md. Arif Hossain 24 September 2021 (has links)
京都大学 / 新制・課程博士 / 博士(農学) / 甲第23528号 / 農博第2475号 / 新制||農||1087(附属図書館) / 学位論文||R3||N5359(農学部図書室) / 京都大学大学院農学研究科地域環境科学専攻 / (主査)教授 藤原 正幸, 教授 中村 公人, 准教授 藤澤 和謙 / 学位規則第4条第1項該当 / Doctor of Agricultural Science / Kyoto University / DGAM
7

Experimental Investigation of the Role of Turbulence Fluctuations on Incipient Motion of Sediment

Celik, Ahmet Ozan 08 September 2011 (has links)
The movement of granular material along a streambed has been a challenging subject for researchers for more than a century. Predicting the limiting case of nearly zero bedload transport, usually referred to as threshold of motion or critical condition, is even more challenging due to the highly fluctuating nature of turbulent flow. Numerous works have advocated that the peak turbulent forces, randomly occurring in time and space with magnitudes higher than the average, initiate the bed material motion. More recent findings have shown that not only the magnitude of the peak turbulent forces acting on individual grains but their duration as well have to be considered for determining the incipient conditions. Their product, or impulse, is better suited for specifying such conditions. The goal of this study was to investigate the mechanism responsible for initiation of sediment motion under turbulent flow conditions. The impulse concept was investigated by utilizing appropriate measurement methods in the laboratory for determining the condition of incipient motion. The experimental program included measurements of particle entrainment rates of a mobile grain and turbulence induced forces acting upon a fixed grain for a range of flow conditions. In addition, near bed flow velocities were measured synchronously with both the entrainment and pressure measurements at turbulent resolving frequencies. Results of this work covered the limitations and uncertainties associated with the experimental methods employed, and the description of the inadequacies of existing incipient motion models via the impulse framework. The extreme sensitivity of bed material activity to minute adjustments in flow conditions was explained by the associated change in the frequency of impulse events. The probability density function proposed for impulse was used together with the critical impulse to estimate the particle entrainment rate for a range of flow conditions. It was shown that the impulse events with potential to dislodge the grain were occurring mostly during sweep type of flow structures. The impulse events were also typically accompanied by positive lift forces. The force patterns showed that the positive peaks in the lift consistently occurred before and after the impulse events in the drag force. The magnitude of these lift forces were significantly higher in the wake of a cylinder compared to that of uniform flow conditions. The time average lift force in the wake of a cylinder was also observed to be positive with magnitudes reaching more than 30% of the submerged weight of the particle. The cylinder caused the downstream turbulence intensity to increase slightly but the particle entrainment rate to increase significantly. This finding provided a physically based explanation for the modification of turbulent force fluctuations and resulting changes in the particle movement rates by such unsteady flow conditions. / Ph. D.
8

Incipient Motion Of Coarse Solitary Particles

Gulcu, Besim 01 February 2009 (has links) (PDF)
In this study the incipient motion of coarse solitary particles having different specific weights and shapes was investigated. A tilting flume of rectangular cross-section having a net working length of 12 m was used through the experiments. The slope of the channel and the discharge in the channel are the two basic variable parameters that determine the initiation of motion. Particles made of cement and mixture of cement and iron dust in certain ratios were used in the experiments with an obstructing element of various heights right behind the particles. Dimensionless hydraulic parameters determined from theoretical analysis were related to each other. Velocity profiles over the flow depths were measured and flow conditions corresponding to critical conditions were evaluated in terms of critical velocities and shear velocities. The findings of this study were compared with the results of similar studies given in the literature.
9

Transport of moderately sorted gravels at low bed shear stress : impact of bed arrangement and fine sediment infiltration / Transport de graviers à faible contrainte : impact de l'arrangement et de l'infiltration du lit par des sédiments fins

Perret, Emeline 18 October 2017 (has links)
Le but de cette thèse est de comprendre la dynamique des graviers au sein des rivières alpines à faible contrainte en utilisant des expériences en laboratoire. Ces rivières sont souvent composées d’une large gamme de sédiments, allant des argiles aux galets. Ces différentes classes sédimentaires peuvent interagir entre elles, ce qui peut rendre difficile l’estimation du transport solide. Des expériences en laboratoire ont été conduites en écoulements instationnaires dans un canal de 18m de long et 1m de large. Deux types de lits ont été étudiés : lits unimodaux et bimodaux. Une attention particulière a été portée sur la réalisation des lits de graviers dans notre canal. Ils ont été créés dans le but d’approcher au mieux la configuration des lits de rivières alpines, c’est-à-dire avec différents arrangements et degrés de colmatage du lit par des sédiments fins. Les lits unimodaux sont composés de graviers peu triés avec divers arrangements de surface. Les lits bimodaux sont composés d’une matrice de graviers peu triés dans laquelle des sédiments fins se sont infiltrés (sables ou limons). Les processus régissant le transport de graviers ont été mis en avant. Le transport de graviers est impacté par l’arrangement du lit, la concentration de sédiments fins dans la couche de charriage, et par le changement de propriétés du lit due à la présence de sédiments fins (cohésion, perméabilité du lit). Plus le lit est arrangé, plus le transport est difficile. Plus la couche de charriage est concentrée en sédiments fins, plus le transport est facile. La forme des sédiments fins est aussi un facteur important pouvant modifier le transport des graviers. La présence de sédiments fins cohésifs dans la matrice peut considérablement réduire le taux de graviers transportés. Un modèle conceptuel a été développé pour résumer les différents processus contrôlant le transport de graviers. Il décrit le comportement des graviers dans les différentes configurations étudiées. L’outil proposé peut aider à comprendre, estimer et interpréter le transport de graviers. Il a été appliqué et discuté sur un cas de terrain sur la rivière de l’Arc. Basé sur ce modèle, nous avons proposé une nouvelle analyse dimensionnelle pour la construction d’un modèle de prédiction de transport solide prenant en compte des paramètres décrivant l’arrangement du lit, les propriétés géotechniques du lit et la présence de sédiments fins / This PhD thesis aims to understand gravel dynamics in Alpine rivers at low bed shear stress using laboratory experiments. Alpine river beds are often poorly sorted and composed of sediments ranging from clay to pebble. To understand interactions between these classes is an issue for predicting bedload rate. Laboratory experiments were performed in a 18m long and 1m wide flume, under unsteady flows. Two types of bed were investigated: unimodal and bimodal beds. A particular attention was paid to the bed construction, which was conducted in order to obtain a nature-like bed 12with different bed arrangements and degrees of clogging. Unimodal beds were made of moderately sorted gravels with different bed surface arrangements. Bimodal beds were made of moderately sorted gravels in which fine sediments (sand or silt) were infiltrated. Gravel rate was found to be impacted by the bed arrangement degree, the fine sediment concentration within the bedload layer and the changes in bed properties due to fine sediment presence (bed cohesion, bed permeability). The more packed the bed is; the more difficult it is to move gravels. The more concentrated in fine sediment the bedload layer is; the easier the transport of gravels is. The shape of fine sediments can also be an important factor for modifying the gravel rate. The presence of cohesive fine sediments within the bed matrix reduces significantly the gravel rate. A conceptual model was developed to recap the different processes controlling gravel transport. It provides a phenomenological description of the overall bed responses to a hydrograph. This tool is designed to help understanding, estimating or interpreting gravel transport in Alpine rivers. The conceptual model was discussed and applied to a field case made on the Arc River. Using the model, we also suggest a new dimensionless analysis for the construction of a bedload predicting model involving parameters describing bed arrangement, bed properties and fine sediment presence
10

Seepage Effects on Stream Power, Resistance, Incipient Motion and Regime of Sand Bed Channels including Its Design

Sreenivasulu, Gopu January 2009 (has links) (PDF)
Common behavioral trends and characteristics of alluvial channels including rivers are extensively discussed in the literature. However, little is known about the hydrodynamic effects of seepage on alluvial channels. Factors like sand bed resistance, stream power of the channel, incipient motion of bed particles, and geometry of the channel cross section are significantly affected by seepage. This thesis presents the experimental investigations that are aimed to find out the quantitative effect of seepage, through a sand bed in downward (suction) direction, on the above mentioned factors. The problem in the sediment transport analysis is that the knowledge of complex interaction of several parameters with seepage cannot be fully obtained. In order to generalize the results, experiments are conducted in four rectangular smooth walled sand bed flumes under steady and fairly uniform flow conditions. Among the four, one is the Large Tilting Flume (LTF), which is 25 m long, 1.80 m wide and 1.00 m deep and with a seepage length of up to 20 m. This LTF is specially built at hydraulic laboratory, Indian Institute of Science exclusively for the present research work especially on alluvial channel regime. The experimental channels are designed to apply controlled amounts of uniform seepage flow in either direction in one flume (Flume-2), and only in downward direction to other three flumes (Flumes 1, 3 and 4). The application of seepage is perpendicular to the sand bed thickness over a sufficient length of the main channel. Appropriate instruments are used to accurately measure the basic experimental variables such as discharge in the main channel, seepage discharge, flow depth, water surface and bed slope, seepage gradients and cross sectional profiles. Experiments are carried out at different conditions (plane beds and curved shape channels) as explained below: Plane sediment beds Series – 1: Experiments to determine incipient motion of bed particles under no-seepage condition. Series – 2: Experiments on the non-transporting condition of the bed particles under both no-seepage and seepage condition. Series – 3: Experiments on the transporting condition of the bed particles under both no-seepage and seepage condition. Curved shape channels Series – A: Experiments to verify Lane’s (1953) geometric profile against higher discharge than prescribed by Lane (1953). Series – B: Experiments to verify the Lane’s (1953) geometric profile by allowing the discharge prescribed by Lane (1953). Series – C: Experiments to predict the final geometric profile by applying suction to Series – B experiments. A wide range of sediment particles are tested. Five different sized uniform sands (d50 = 1 mm, 0.56 mm, 0.65 mm, 1.00 mm and 1.77 mm) and gravel of size d50 = 8.00 mm are used for experimentation. Among the six sizes, three sizes (d50 = 0.56 mm, 0.65 mm, 2 mm) are used for seepage experimentation. The experimental data from the present experiments along with the available data from other sources on more sizes of sand are analyzed, thus covering a wide range of sand sizes. The following important results are obtained from the analysis. A new resistance equation has been developed for plane sediment beds (with little or no-transport) such that the average velocity in the channel depends on the shear velocity Reynolds number. A careful study has been done on incipient motion and concluded that incipient motion is better explained by critical stream power criterion for plane sediment beds. With the help of critical stream power criterion, a straightforward design procedure using design tables/design curves and analytical methods are presented to solve six possible design problems. For plane and non-transporting beds, in general, the stream power in the channel increases with suction and decreases with injection. The increase and decrease depend on the seepage power intensity parameter (NP), initial value of stream power (Ωbo), and critical stream power of the particles under no-seepage condition (Ωco). An expression relating all the influencing parameters is established to quantitatively estimate the stream power (Ωbs) variation with both the types of seepages, i.e., with suction and injection. It is found that the seepage has a significant influence in changing critical stream power for incipient motion of the bed material and the value is significantly different from the no-seepage critical value. An expression is established to quantitatively estimate the critical stream power with seepage (upward and downward) for a given critical stream power (Ωco) of the bed material under no-seepage conditions and initial stream power (Ωbo). It has been established that critical stream power curve used to define incipient motion is valid only for no-seepage condition of the bed and it cannot be used for sand beds under seepage condition, as seepage effects significantly alters the stream power. From the wide range of experimental data (including the observations from LTF) it is found that suction (downward seepage through the sand bed) enhances the transport or aids the incipient motion of bed particles which are initially at rest. Thus, suction reduces the stability and increases the erosion of bed particles when compared to no-seepage conditions. However, it is found that injection (upward seepage) affects in an opposite way, i.e., it can reduce the transport rate or even inhibit the incipient motion. Thus, injection increases the stability and reduces the erosion of bed particles when compared to no-seepage conditions. Therefore, it is concluded that suction increases the mobility of sand particles where as injection decreases their mobility. An expression to find the incipient motion with seepage (both suction and injection) is established in terms of stream power’s (Ωco, Ωbo and Ωbs) based on the present experimental data along with others' data. With the help of these expressions design procedure is developed for ten types of possible problems. A numerical model for spatially varied flow has been developed with the help of the seepage governing equations, developed in this thesis, to compute flow profiles along the channel length. A methodology of predicting the location of incipient motion section in sand bed channels affected by seepage is also presented. Channel geometry affected by seepage (suction) is established in the form of regression relationships for perimeter, flow depth and slope of the channel. Different combinations (bi-variate and tri-variate) of dimensional and non-dimensional regression relationships are developed. An approach to channel design has been developed based on the application of functional analysis of the salient variables that control the channel behavior. And also, it has been established that, Lane’s (1953) profile almost matches with experimental profile for no-seepage condition. The present investigation clearly shows the significance of seepage in altering the hydraulic and sediment transport behavior of sand bed channels. From the practicing engineer’s point of view it is hoped that present design procedures will be helpful in safe guarding the seepage affected channels.

Page generated in 0.0989 seconds