• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 1
  • 1
  • Tagged with
  • 9
  • 9
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Experimental and mathematical investigation of dynamic availability of metals in sediment

Hong, Yongseok 17 April 2014 (has links)
Contaminated sediments are periodically subjected to resuspension processes during either storm events or due to dredging. In sediments, metals are often contained in insoluble low bioavailability forms. Upon resuspension, however, biogeochemical processes associated with the exposure to more oxic conditions may lead to transformation and release of the metals, giving rise to exposure and risk in the water column. Batch experiments suggested that oxidation of reduced species and corresponding pH decrease were the most importance processes controlling metals release upon sediment resuspension. A mathematical model was implemented to better understand the complex underlying biogeochemical reactions that affect metals release. The model described the metals dynamics and other inter-related important biogeochemical factors well and was successful at predicting the metals release from different sediment reported in the literature. Tidal and other cyclic variations in oxygen, pH and other relevant parameters in the overlying water may also lead to cyclic transformations and release of metals from surficial sediments. In simulated estuarine microcosm experiments, cyclic variations in pH and salinity due to freshwater/saltwater exchange were shown to lead to cyclic variations in metal release. Both pH and salinity were important factors controlling interstitial dissolved metals concentrations, however, in terms of freely dissolved metals concentrations, which have been considered to be more related with toxicity and bioavailability, pH was the single most important parameter. The mathematical model was extended to the conditions of the cyclic behavior in an estuary and successfully described metals release under such conditions. It is believed that the model can be used to predict the metals behavior in other sediments and conditions by model calibration with a similar experimental approach to that used in this study. / text
2

The effect of Lake Erie water level variation on sediment resuspension

Dusini, Douglas S. 29 March 2005 (has links)
No description available.
3

BASIN-SCALE WAVES DYNAMICS AND SEDIMENT RESUSPENSION MECHANICS IN CENTRAL LAKE ERIE

Valipour, REZA 20 December 2012 (has links)
High-resolution physical and biogeochemical field data in central Lake Erie during the summers of 2008-2009 along with a three-dimensional numerical model were used to investigate the dynamics of basin scale waves and sediment resuspension mechanisms. In Chapter 2, the modal response of the Poincaré waves in the lake is assessed. The vertical mode-one Poincaré wave was found to be mostly dominant during the seasonal stratified period. The horizontal modal structure was also investigated in a sensitivity analysis, using the numerical model forced with real and idealized wind events. In Chapter 3, dynamics of bottom mixed layer (BML), primarily forced in the outer layer by surface seiches and Poincaré waves is studied for two 10-days representative intervals of weak and strong stratification. Shear velocity was calculated by least square fitting the well-known law-of-the-wall equation to observed near-bed velocity in a region of constant shear stress. Height of the BML is computed using water density (from water temperature) and compared with heights of logarithmic layer approximated using the law-of-the-wall equation and its modified form with buoyancy length scale term. Published equations for estimating BML heights are evaluated and modified for the lake. In Chapter 4, we investigate physical processes leading to sediment resuspension in the lake including surface waves (periods of 4-8s), up/downwelling events (periods of 3-4 day), and high frequency internal waves (periods of 5-45min). Temporal changes in near-bottom sediment resuspension are illustrated using changes in acoustic backscatter signals from current profilers and time series of turbidity measurements to identify the mechanism responsible for sediment resuspension. Resuspension is parameterized as a function of the critical velocity ~0.25ms-1 and from surface waves using linear wave theory. Finally, based on the critical velocity and sediment grain size analysis (from in-site field data), critical shear stress and Shields parameter are calculated and compared with previous observations in Lake Erie and in other locations suggesting a modified Shields diagram for silty bed materials. / Thesis (Ph.D, Civil Engineering) -- Queen's University, 2012-12-19 20:54:15.832
4

Near-Field Sediment Resuspension Measurement and Modeling for Cutter Suction Dredging Operations

Henriksen, John Christopher 2009 December 1900 (has links)
The sediment resuspension and turbidity created during dredging operations is both an economical and environmental issue. The movement of sediment plumes created from dredging operations has been predicted with numerical modeling, however, these far-field models need a “source term” or near-field model as input. Although data from field tests have been used to create near-field models that predict the amount of material suspended in the water column, these results are skewed due to limitations such as non-uniform sediment distributions, water currents, and water quality issues. Laboratory investigations have obtained data for turbidity during dredging operations, but these results do not take advantage of the most contemporary testing methods. The purpose of this dissertation is to provide an estimation of turbidity created during a cutter suction dredging operation. This estimation was facilited by the development of resuspension measurement and data acquisition techniques in a laboratory setting. Near-field turbidity measurements around the cutter head were measured in the Haynes Coastal Engineering Laboratory at Texas A&M University. The laboratory contains a dredge/tow tank that is ideal for conducting dredging research. A dredge carriage is located in the dredge/tow tank and is composed of a carriage, cradle, and ladder. Acoustic Doppler Velocimetry (ADV) and Optical Backscatter Sensor (OBS) measurements were taken at specific points around the cutter head. The variables of suction flow rate, cutter speed, and the thickness of cut were investigated to understand their specific effect on turbidity generation and turbulence production around the cutter head. A near-field advection diffusion model was created to predict resuspension of sediment from a cutter suction dredge. The model incorporates the laboratory data to determine the velocity field as well as the turbulent diffusion. The model is validated with laboratory testing as well as field data. Conclusions from this research demonstrate undercutting consistently produced larger point specific turbidity maximum than overcutting in the laboratory testing. An increase in suction flow rate was shown to increase production and decrease turbidity around the cutter head. In general, an increase in cutter speed led to an increase in turbidity. The thickness of cut produced less resuspension for a full cut versus a partial cut. Data for a “shallow cut” also produced less turbidity generation than partial cuts. The numerical model was compared to all laboratory testing cases as well as the Calumet Harbor and New Bedford cutter resuspension data and produced suitable MRA values for all tests. The numerical model produced higher point specific regions of turbidity for undercutting but produced larger mean values of turbidity for overcutting.
5

Sediment Dynamics of a Shallow Hypereutrophic lake: Lake Jesup, Florida, USA

Nielsen, Shauna 08 November 2011 (has links)
Improved knowledge of sediment dynamics within a lake system is important for understanding lake water quality. This research was focused on an assessment of the vertical sediment flux in Lake Jesup, a shallow (1.3 m average depth) hypereutrophic lake of central Florida. Sediment dynamics were assessed at varying time scales (daily to weekly) to understand the transport of sediments from external forces; wind, waves, precipitation and/or runoff. Four stations were selected within the lake on the basis of water depth and the thicknesses of unconsolidated (floc) and consolidated sediments. At each of these stations, a 10:1 (length to diameter) high aspect ratio trap (STHA) was deployed to collect particulate matter for a one to two week period. The water and sediment samples were collected and analyzed for total carbon (TC), total phosphorus (TP) and total nitrogen (TN). Mass accumulation rates (MAR) collected by the traps varied from 77 to 418 g m-2 d-1 over seven deployments. TN, TP and TC sediment concentrations collected by the traps were consistently higher than the sediments collected by coring the lake bottom and is most likely associated with water column biomass. A yearly nutrient budget was determined from August 2009 to August 2010 with flux calculated as 2,033,882 mt yr-1.
6

Quantifying Mass Sediment Movement in Deer Creek Reservoir During Spring Runoff and Potential Water Quality Impacts

Ricks, Colin Rodger 18 October 2011 (has links) (PDF)
The accurate prediction of water quality is essential for management of reservoirs used for drinking water supply. Since algae are a major source of taste and odor problems in drinking water, understanding and controlling algal growth and production is an important task. Deer Creek Reservoir supplies drinking water for over one million people in northern Utah and has been highly eutrophic in the past. Despite major reductions in external nutrient loading, including phosphorus, seasonal algal blooms in Deer Creek have not decreased to desired levels. Resuspension of sediment has been suggested as a potential source of internal nutrient loading for water bodies (including reservoirs in the Utah/Wyoming area) and may be responsible for delays in water quality improvement. I investigated sediment deposition and resuspension rates at the upper end of the reservoir and evaluated these sediments as a possible internal source of phosphorus. Sonar and GPS systems were used to make measurements of recently deposited sediment in the submerged Provo River delta of Deer Creek Reservoir during the period of May, June, July, and August 2011. ArcGIS 10 was used to interpolate survey points and calculate sediment volume changes, including areas of deposition and erosion. These data were used to develop approximate sedimentation rates for the soft sediment – which is most susceptible to resuspension during reservoir drawdown. I used previously measured field phosphorous concentrations in the sediment to estimate if these processes could affect reservoir phosphorous concentrations. The study used two survey areas, a small area near the Provo River inlet early in the year, and an extended larger area starting on June 23rd. I found that sediment volume in the smaller study area was increasing at a rate of 27-109 m3/day during the spring season. Data show that rates are slightly correlated with flow and reservoir elevation. Typically by August, Deer Creek reservoir would have been drawn down 2 to 4 m. However, due to a heavy snow pack in 2011, Deer Creek reservoir was not drawn down. When the reservoir is drawn down, the sediments in the upper region of the delta, where the survey was conducted, will be resuspended and deposited lower in the reservoir. These processes will likely result in releasing the phosphates currently bound to the sediment into the water column. Based on previous measurements of readily soluble phosphates bound to the sediment, this resuspension could release between 80 and 230 kg of phosphorus from the study area into the water column during critical times during the warm months–conditions well suited for algal growth. This amount of phosphorus, while an upper bound of what could be expected under actual field conditions, could raise phosphorus concentrations in the survey area by as much as 0.38 mg/L. The potential P (80-230 kg) release could account for 14%-42% of the TMDL. This is a potentially significant amount, especially if released during the critical late-summer period, and warrants more detailed study.
7

Modelling multi-phase flows in nuclear decommissioning using SPH

Fourtakas, Georgios January 2014 (has links)
This thesis presents a two-phase liquid-solid numerical model using Smoothed Particle Hydrodynamics (SPH). The scheme is developed for multi-phase flows in industrial tanks containing sediment used in the nuclear industry for decommissioning. These two-phase liquid-sediments flows feature a changing interfacial profile, large deformations and fragmentation of the interface with internal jets generating resuspension of the solid phase. SPH is a meshless Lagrangian discretization scheme whose major advantage is the absence of a mesh making the method ideal for interfacial and highly non-linear flows with fragmentation and resuspension. Emphasis has been given to the yield profile and rheological characteristics of the sediment solid phase using a yielding, shear and suspension layer which is needed to predict accurately the erosion phenomena. The numerical SPH scheme is based on the explicit treatment of both phases using Newtonian and non-Newtonian Bingham-type constitutive models. This is supplemented by a yield criterion to predict the onset of yielding of the sediment surface and a suspension model at low volumetric concentrations of sediment solid. The multi-phase model has been compared with experimental and 2-D reference numerical models for scour following a dry-bed dam break yielding satisfactory results and improvements over well-known SPH multi-phase models. A 3-D case using more than 4 million particles, that is to the author’s best knowledge one of the largest liquid-sediment SPH simulations, is presented for the first time. The numerical model is accelerated with the use of Graphic Processing Units (GPUs), with massively parallel capabilities. With the adoption of a multi-phase model the computational requirements increase due to extra arithmetic operations required to resolve both phases and the additional memory requirements for storing a second phase in the device memory. The open source weakly compressible SPH solver DualSPHysics was chosen as the platform for both CPU and GPU implementations. The implementation and optimisation of the multi-phase GPU code achieved a speed up of over 50 compared to a single thread serial code. Prior to this thesis, large resolution liquid-solid simulations were prohibitive and 3-D simulations with millions of particles were unfeasible unless variable particle resolution was employed. Finally, the thesis addresses the challenging problem of enforcing wall boundary conditions in SPH with a novel extension of an existing Modified Virtual Boundary Particle (MVBP) technique. In contrast to the MVBP method, the extended MVBP (eMVBP) boundary condition guarantees that arbitrarily complex domains can be readily discretized ensuring approximate zeroth and first order consistency for all particles whose smoothing kernel support overlaps the boundary. The 2-D eMVBP method has also been extended to 3-D using boundary surfaces discretized into sets of triangular planes to represent the solid wall. Boundary particles are then obtained by translating a full uniform stencil according to the fluid particle position and applying an efficient ray casting algorithm to select particles inside the fluid domain. No special treatment for corners and low computational cost make the method ideal for GPU parallelization. The models are validated for a number of 2-D and 3-D cases, where significantly improved behaviour is obtained in comparison with the conventional boundary techniques. Finally the capability of the numerical scheme to simulate a dam break simulation is also shown in 2-D and 3-D.
8

Écologie et déterminisme physique des peuplements de macrophytes dans les lacs naturels peu profonds : application aux grands lacs du littoral aquitain de Carcans-Hourtin, Lacanau, Cazaux-Sanguinet et Parentis-Biscarrosse (Gironde, Landes) / Ecology and physical determinism of macrophyte populations and communities in shallow natural lakes : application to Carcans-Hourtin, Lacanau, Cazaux-Sanguinet and Parentis-Biscarrosse lakes (Gironde, Landes)

Bertrin, Vincent 17 December 2018 (has links)
Les écosystèmes littoraux lacustres, ou ceintures des lacs, ont une valeur écologique très importante. Zones de transition et d'échanges entre les écosystèmes terrestre et aquatique, les rives des lacs et leurs zones littorales sont reconnues pour abriter une forte biodiversité, dont des plantes aquatiques visibles à l'œil nu : les macrophytes. La structure spatiale, l'abondance et la composition spécifique de ces peuplements végétaux sont conditionnées par le caractère et le fonctionnement physiques des biotopes littoraux lacustres. Ce travail de thèse est dédié à l'acquisition de connaissances sur les relations entre les peuplements macrophytiques et les déterminants physiques de biotopes littoraux lacustres dans les lacs peu profonds. Il s'applique à définir, à différentes échelles, les préférences hydroécologiques et la structure fonctionnelle et spatiale de communautés et populations de plantes aquatiques. Cette recherche s'appuie sur la modélisation et sur des observations, mesures et prélèvements menés in situ sur les macrophytes et les variables environnementales dans les grands lacs naturels du littoral aquitain. Les principaux résultats indiquent que l'action du vent et des vagues, la pente des rives, la profondeur, la granulométrie et la matière organique des sédiments influencent l'organisation spatiale et les assemblages d'espèces de macrophytes. Ces variables peuvent être utilisées pour prédire la distribution potentielle de certaines communautés végétales. Les altérations anthropiques de l'hydromorphologie favorisent le développement des espèces exotiques tout en compromettant le maintien des espèces indigènes patrimoniales. Les enjeux liés à la gestion des espèces exotiques et des espèces indigènes ont également été identifiés à partir d'une analyse diachronique des dynamiques écologiques de la végétation depuis quarante ans dans les lacs aquitains. Il est désormais urgent d'établir une stratégie de conservation des espèces indigènes, voire de restauration pour les patrimoniales, et de limiter la dispersion des espèces exotiques dans les lacs. Présentant de nombreuses analogies avec les lacs d'Europe du Nord tels que les softwater lakes ou les Lobelia lakes, les processus écologiques en cours dans les lacs du sud-ouest de la France pourraient préfigurer la situation à venir pour l'ensemble des lacs du même type dans le contexte du changement global. Les écosystèmes littoraux lacustres concentrent des enjeux écologiques, économiques et sociétaux, soulevant des questions et problématiques scientifiques sur leur fonctionnement et sur la bioindication de leur état écologique qu'il est nécessaire de continuer à explorer. / Lakeshores zones are of very high ecological value. As they are ecotones between terrestrial and aquatic ecosystems, lake shoreline and littoral zones are characterized by a high level of biodiversity, including macroscopic aquatic plants known as macrophytes. Plant distribution, abundance and species composition are determined by physical features of lakeshores. This work aims to assess relationships between macrophyte populations and communities and hydromorphological components in shallow lakes at different scales. Plant and environmental variables were modeled or collected on the field in large lakes located along the western French Atlantic coast. Wind and wave action, slope, depth, sediment grain size and organic matter content are well known for their influence on macrophyte species distribution and assemblages. Physical variables can be used to predict the potential distribution of plant communities. Anthropogenic physical disturbances enhances the development of invasive species while they threaten rare and endangered native species. Plant management issues were also highlighted from a long-term field data (fourty years) analysis of macrophyte dynamics in these shallow lakes. Management strategies are needed for the conservation of native species, or even their restoration, and the control of alien species spread in these lakes. Similar in some ways to northern European lakes such as softwater lakes or Lobelia lakes, the ecological processes identified in these Atlantic shallow lakes could foreshadow the future situation for all lakes of the same type in the context of global change. Lakeshore ecosystems gather ecological, economic and societal issues, raising scientific questions and issues about their functioning and the bioindication of their ecological status that needs to be further explored.
9

Tidal and sediment dynamics of a partially mixed, micro-tidal estuary

O'Callaghan, Joanne M. January 2005 (has links)
[Truncated abstract] The expansion of human populations in coastal land margins has resulted in major modifcations to estuarine ecosystems. The use of numerical models as predictive tools for assessing remediation strategies is increasing. However, parameterisation of physical processes, developed mainly through field investigations, is necessary for these models to be reliable and effective management tools. The physical processes in micro–tidal diurnal tidal systems are relatively unknown and the current study examines field measurements obtained from the upper Swan River estuary (Western Australia), a diurnal, partially mixed system during the summer when the freshwater discharge is negligible. The aims of the study were to characterise, temporally and spatially, the dominant physical processes and associated sediment resuspension. Variability at three dominant time-scales were examined: 1) sub–tidal oscillations (∼5 to 10 days) resulting from local and remote forcing; 2) tidal (∼ 24 hours) due to astronomical forcing; and 3) intra-tidal (∼2 to 3 hours) resulting from the interaction between tidal constituents. Circulation in estuaries is widely accepted in the literature to be dominated, in varying proportions, by tidal range, freshwater discharge and gravitational circulation. In the upper Swan River estuary sub–tidal oscillations were responsible for the largest upstream displacement of the salt wedge in the absence of freshwater discharge. Moreover, these sub–tidal fluctuations in water level modified the ‘classic’ estuarine circulation. The dynamics of diurnal tides are largely controlled by the tropic month, which oscillates at a slightly different period to the lunar month, resulting in the spring–neap tidal cycle to be sometimes different from syzygy. The phase lag between the diurnal (O1 + K1) and semi-diurnal (M2 + S2) constituents, at the seasonal time scale cause the maximum tidal range to be near the solstice. Over a 24–hour tidal cycle this phase lag is manifested as an intra–tidal oscillation that occurs on the flood tide. Turbidity events that last ∼1 to 2 hours occur during the intra–tidal oscillation, but are not related to maximum shear stress predicted from the mean flow characteristics. The increases in turbidity during the intra–tidal oscillation is, however, correlated with the near–bed Reynolds fluxes. During the intra–tidal oscillation advection opposes the estuarine circulation in the near–bed region, promoting vertical shear that results in destratifcation of the water column. The turbulent mixing generated at the interface and in the near–bed region coincide with resuspension events. Similar turbidity data have often been disregarded and documented as being ‘spikes’ based on the premise that the mean flow was below a critical level to resuspend sediment. Resuspension events were not simply related to mean processes and may be controlled by turbulent instabilities generated when tidal currents reverse during an intra-tidal oscillation

Page generated in 0.1365 seconds