Spelling suggestions: "subject:"[een] COATING"" "subject:"[enn] COATING""
461 |
SFEER Hydrogen Permeation : Finding a suitable coating for the PA6 linerFriis, Elsa, Karlsson, Klara, Damgren, Rebecka, Åkesson, Emma, Johansson, Malin January 2023 (has links)
Water Stuff & Sun are developing a hydrogen battery based on a technology called SFEER’s. The SFEER’s are spherical high-pressure gas storage containers that are the size of a tennis ball. They consist of a carbon fiber-shell that is lined on the inside with a polymer called PA6. The aim of this literature review is to present suitable materials that can be utilized as a coating on the PA6 liner in the SFEER’s to minimize the hydrogen permeability. The metallic coatings that were investigated are compounds based on chromium, boron, alu- minum and titanium. The non-metallic coatings that were investigated are lamellar inorganic components (LIC) in combination with PA6 and modified graphene oxide (GO). The coating methods that were investigated are some different PVD and CVD methods (sputter deposition, plasma enhanced CVD, ALD), electrodeposition and cold spray. The lowest permeability out of all the coatings was observed for alumina, Al2O3. Titanium nitride, TiN, was also found to have very low permeability. Since these two coatings had the lowest permeabilities they were further compared considering other factors. This resulted in alumina being chosen as the final recommendation for coating the SFEER’s. A comparison was also made to find the most suitable coating method for alumina. Cold spray was found to be very promising but if it can not be used the PVD and CVD methods are other potential candidates.
|
462 |
Material characterization of multi-layered Zn-alloy coatings on fasteners : Effects on corrosion resistance, electrical conductivity and frictionVallien, Ante January 2018 (has links)
Electroplated zinc-alloy coatings have been used on fasteners in the automotive industry for many years. The coating often consists of three layers: a zinc-alloy layer, a passivation layer and a sealer or top-coat. The coating layers affect the functional properties of the fastener (mainly the corrosion resistance, friction coefficient and electrical conductivity), and the aim of this thesis has been to increase the understanding of how these functional properties are affected by the properties of the coating. The corrosion resistance, friction coefficient and electrical conductivity of several different fasteners have been tested. Variations in these properties are connected with morphological and chemical properties of the electro-deposited zinc-alloy coating, passivation layer and sealer/top-coat of the fasteners. Measurement methods include scanning electron microscope and energy dispersive x-ray spectroscopy (SEM-EDX), light optical microscope (LOM), x-ray fluorescence (XRF), glow discharge optical emission spectroscopy (GD-OES), broad ion beam (BIB) and Fourier transform infrared spectroscopy (FTIR). From the results it can be concluded that the surface structure of zinc-nickel layers differs significantly from supplier to supplier. Screws with a thicker and rougher zinc-nickel surface structure displays higher friction values, but lower electrical resistance values. Optimisation of both of these properties is thus challenging. The distribution and surface structure of the outmost top-coat layer also differs between suppliers, but no connection between this and the functional properties of the screw has been found. The corners of the screw heads are often lacking a proper zinc-alloy coating, and this is also where corrosion is initiated. In general, the zinc-nickel alloy coating systems are performing better and display less corrosion spreading effects than the zinc-iron or pure zinc systems in terms of corrosion. / Elektropläterade zinklegeringsbeläggningar har använts på fästelement inom bilindustrin under många år. Beläggningen består ofta av tre skikt: ett zinklegeringsskikt, ett passiveringsskikt och en ”top-coat”, eller ”sealer”. Beläggningsskikten påverkar fästelementens funktionella egenskaper (främst korrosionsbeständighet, friktionskoefficient och elektrisk ledningsförmåga) och syftet med denna avhandling har varit att öka förståelsen för hur dessa funktionella egenskaper påverkas av ytbeläggningens egenskaper. Korrosionsmotståndet, friktionskoefficienten och den elektriska ledningsförmågan hos flera olika fästelement har mätts. Variationer i dessa egenskaper kopplas till de morfologiska och kemiska egenskaperna hos den elektropläterade zinklegeringsskiktet, passiveringsskiktet och top-coat-skiktet hos fästelementen. Mätmetoder inkluderar svepelektronmikroskop och röntgenspektroskopi (SEMEDX), ljusoptiskt mikroskop (LOM), röntgenfluorescens (XRF), optisk strålningsspektroskopi (GD-OES), bred jonstråle (BIB) och Fourier-transformerad infraröd spektroskopi (FTIR). Av resultaten kan man dra slutsatsen att ytstrukturen hos zink-nickelskiktet skiljer sig avsevärt från leverantör till leverantör. Skruvar med tjockare och hårdare zink-nickelytstruktur visar högre friktionsvärden, men lägre elektriska resistansvärden. Optimering av båda dessa egenskaper är således utmanande. Distributionen och ytstrukturen hos det yttersta top-coat-skiktet skiljer sig också mellan leverantörer, men ingen samband mellan detta och skruvens funktionella egenskaper har hittats. Skruvhuvudets hörn saknar ofta en lämplig zinklegeringsbeläggning, och det är också där korrosion initieras. I allmänhet fungerar zink-nickellegeringsbeläggningssystemen bättre och visar mindre spridningseffekter i termer av korrosion än zinkjärn eller rena zinksystem.
|
463 |
Structure-Property Evaluation of CrN Coatings Developed for BUE Dominated High-Speed Machining ApplicationsAkter, Shahana January 2023 (has links)
Various nitrides, such as chromium nitride and titanium nitride, find
extensive use in cutting tools, micromechanical devices, and medical implants due
to their exceptional physical, mechanical, and chemical properties. These coatings
exhibit superior hardness compared to high-speed steel and cemented carbide
along with notable protective capabilities against corrosion and wear. These
coatings have been successfully used to enhance the properties of cemented
carbide and steel tools while safeguarding their surfaces. By adjusting deposition
parameters like N2 gas pressure, the properties of PVD coatings can be tailored to
effectively withstand specific dominant wear modes during machining. The study
investigates and demonstrates that CrN coatings can be specifically engineered to
have distinct mechanical and tribological properties by adjusting the N2 gas
pressure, which enhances machining performance in cases where BUE formation
occurs. A comprehensive coating characterization was conducted for each CrN
coating studied. Wear performance assessments of the various CrN-coated WC
tools were carried out during dry finish turning of SS 304. Additionally, high temperature coating characterization was performed for the best-performing in house deposited coating (nitrogen gas pressure of 4 Pa, bias voltage of -50 V) and
a commercial coating, up to 450°C. The results highlighted the influence of N2 gas
pressure on the structural, mechanical, and tribological properties of CrN coatings.
The findings indicate that coatings with a comparatively low H/E ratio (while
maintaining higher elastic modulus values), low roughness, moderate residual stress, high plasticity index, and high toughness exhibited superior performance
when machining sticky materials and in high-temperature applications prone to
adhesive wear and built-up edge (BUE) formation. Furthermore, high-temperature
studies confirmed that the in-house coating retained a low H/E ratio, high plasticity
index, high toughness, and low roughness, without compromising the hardness or
elastic modulus values. In contrast, the commercial coating failed to retain its
properties at higher temperatures. These high-temperature studies provide
valuable insights for selecting CrN coatings tailored for machining materials that
tend to adhere to the cutting tool and for high-temperature applications. / Dissertation / Master of Applied Science (MASc) / Coating properties such as hardness, residual stress, adhesive behaviour,
elastic modulus, and roughness significantly affect tool performance and wear
patterns, besides machining parameters and conditions. This research focuses on
CrN coatings deposited by PVD cathodic arc deposition, adjusting the N2 gas
pressure while keeping bias voltage constant. The research investigates and
illustrates that CrN coatings can be specifically tailored (by adjusting the N2 gas
pressure) to possess unique mechanical, and tribological properties that
ameliorate machining performance in scenarios involving BUE formation. Three
CrN coatings were deposited using the PVD technique by varying the N2 gas
pressure. A thorough coating characterization was conducted for each of three in house deposited coatings and one commercially available coating. The wear
behaviour of different CrN-coated WC tools was evaluated during dry finish turning
of SS 304 to identify the best-performing coating. Lastly, high-temperature coating
characterization was performed up to 450 ˚C for one in-house deposited coating
(nitrogen gas pressure of 4 Pa, bias voltage of -50 V) and one commercial coating.
The results showed that a coating that has low H/E ratio (without compromising
elastic modulus), high plasticity index, high toughness, moderate residual stress
and low roughness effectively minimizes issues related to sticking and BUE
formation and retains coating properties at high temperatures.
|
464 |
Morphology and Protection Mechanisms of Epoxy-silane Anti-Corrosion CoatingsWang, Peng January 2009 (has links)
No description available.
|
465 |
[en] ANALYSIS OF CRACKS AND COATING IN IRON ORE PELLETS BY DIGITAL IMAGE PROCESSING / [pt] ANÁLISE DE TRINCAS E COATING EM PELOTAS DE MINÉRIO DE FERRO POR PROCESSAMENTO DIGITAL DE IMAGENSTHALITA DIAS PINHEIRO CALDAS 22 December 2020 (has links)
[pt] As pelotas de minério de ferro são produzidas a partir de um processo de aglomeração de finos de minério denominado pelotização, e possuem granulometria adequada para utilização em fornos siderúrgicos. Nesta dissertação dois fenômenos associados às superfícies das pelotas foram estudados: a formação de trincas e a presença de recobrimento (coating). Durante a pelotização, as pelotas são submetidas a diversos esforços compressivos e mudanças bruscas de temperatura. Desta forma, são geradas trincas em sua superfície, que são prejudiciais à resistência e ao desempenho nos fornos de redução. Já durante o processo de redução pode ocorrer a formação de pontes de ferro entre as pelotas, que se aglomeram formando clusters que comprometem o fluxo de gases no interior dos fornos. Este problema pode ser minimizado recobrindo as pelotas com uma mistura a base de óxidos de magnésio, o coating, que inibe a formação das pontes. Tendo em vista a importância de caracterizar trincas e coating na superfície das pelotas, a presente dissertação desenvolveu metodologias de aquisição, processamento e análise digital de imagens adquiridas com um estereoscópio. Foram desenvolvidos porta-amostras ajustáveis que permitiram a aquisição de imagens 2D de pelotas aproximadamente esféricas de diferentes tamanhos, cobrindo a maior parte da superfície e evitando a sobreposição de regiões de análise. A rotina de análise de trincas comparou dois métodos de segmentação e forneceu atributos como espessura média, fração de área e comprimento. A rotina de análise de coating utilizou segmentação por limiarização e mediu a fração de área ocupada em cada pelota. O uso dos porta-amostras foi fundamental para o sucesso do procedimento de aquisição. As rotinas de análise de trincas ou de coating se mostraram robustas para diferentes amostras. / [en] Iron ore pellets are produced from an ore fines agglomeration process called pelletizing, and are suitable for use in steel furnaces. In this dissertation two phenomena associated with the pellet surfaces were studied: crack formation and the presence of coating. During pelletizing, the pellets undergo various compressive forces and sudden changes in temperature. In this way, cracks are generated on its surface, which are detrimental to strength and performance in reduction furnaces. Already during the reduction process the formation of iron bridges can occur between the pellets, which clump forming clusters that compromise the flow of gases inside the furnaces. This problem can be minimized by coating the pellets with a magnesium oxide coating, which inhibits the formation of bridges. Given the importance of characterizing cracks and coating on the surface of the pellets, this dissertation developed methodologies for acquisition, processing and digital analysis of images acquired with a stereoscope. Adjustable sample holders were developed which allowed the acquisition of 2D images of approximately spherical pellets of different sizes, covering most of the surface and avoiding overlapping analysis regions. The crack analysis routine compared two segmentation methods and provided attributes such as mean thickness, area fraction and length. The coating analysis routine used threshold segmentation and measured the fraction of area occupied in each pellet. The use of the sample holders was fundamental to the success of the acquisition procedure. Crack analysis or coating routines were robust for different samples.
|
466 |
A High-Throughput Study of the Tribological Properties of MoN-Cu Coatings in Low Viscosity FuelsCaldwell, Slater Leigh 07 1900 (has links)
The aim of this thesis is to develop a tribocatalytically active solid coating that exhibits strong wear resistance, while also inducing the formation of carbon-based tribofilms when used in a hydrocarbon environment. By using tribocatalytic MoN-Cu synthesized through combinatorial DC reactive magnetron co-sputtering, a gradient between MoN and Cu is deposited and used to determine an ideal Cu composition exhibiting high wear resistance and the formation of a carbon-based tribofilm. To determine the properties of the thin film, various characterization methods were used before and after wear tests from an Anton-Paar pin-on-disk tribometer in a decane or ethanol bath. XRD, SEM, and EDS determined the phase structures and compositions. Nanoindentations and optical profilometry found hardness, Young's modulus, and wear rates. Raman analysis saw carbon presence on the surface of the wear tracks, confirming the formation of carbon tribofilms. For the wear rates, it was found that each fuel had different reactions to the changing Cu at%. From the Raman data, carbon presence, wear rates, and Cu at% did not reveal a strong correlation between the three sets of information. Specifically for the ethanol tracks, the was a connection between a high carbon amount and lower wear rate. It was inconclusive if there was one Cu at% that afforded the most ideal conditions. The information found here has developed the knowledge of MoN-Cu as a solid protective coating, and for using combinatorial DC reactive magnetron co-sputtering as an aid for materials development.
|
467 |
Mechanism and Modeling of Contact Damage in ZrN-Zr and TiAIN-TiN Multilayer Hard CoatingsVerma, Nisha January 2012 (has links) (PDF)
With the amalgamation of hard coating in cutting tools industries for three decades now, a stage with proven performance has been reached. Today, nearly 40% of all cutting tools used in machining applications are sheltered with coatings. Coatings have proven to dramatically improve wear resistance, increase tool life and enable use at higher speed. Over the years TiN, TiAlN and TiC have emerged as potential materials to coat machining tools. Chemical vapor deposition was the first technology to be used to deposit these coatings followed by physical vapor deposition. Currently, extensive use is being made of cathodic arc evaporation and sputtering for coatings components.
The principal limiting factor in the performance of these cutting tools lies in their failure due to the brittleness of these coatings. These hard coatings, usually coated on soft steel substrates, are subjected to contact damage during service. This contact damage is driven by mismatch strain between the elastically deforming film on a plastically deforming substrate. Understanding of the contact damage is the key parameter for improvement in the coating design. Contact damage involves initiation of cracks and subsequent propagation within coating. Multiple cracking modes are seen in nitride coatings on soft substrate and mutual interaction of cracks may lead to spallation of the coating, exposing the substrate to extreme service conditions. Hence visualization of subsurface crack trajectories facilitates the classification of benign and catastrophic modes of failure, which consequently allows us to tailor the coating architecture to eliminate catastrophic failure.
Multilayers have shown to perform better then monolayer coatings. In multilayer coatings, application specific particular properties can be engineered by alternately stack-ing suitable layers. The multilayer utilizes benefits of interfaces by crack deflection, crack blunting and desirable transition in residual stress across the interface. Hence, designing interfaces is the key parameter in the multilayer coating. However, very few studies exist that describe experimental visualization of deformation modes in multilayer coatings with different types of interfaces, e.g. nitride/nitride and nitride/metal. Thus the prime objective of the present study is to comprehend the influence of different interface structures as well as its architecture on the various contact damage modes in these coatings.
TiAlN/TiN has shown better tribological properties compared to its constituent monolayers. There is an order of magnitude augmentation in loads for cracking without any hardness enhancement relative to monolayers of constituents, with the additional feature that both constituents exhibit similar hardness and modulus. The resistance to cracking is seen to increase with increase in number of interfaces. Hence this uniqueness in toughening without drastic reduction in mechanical properties provides the motivation for understanding the fundamental mechanisms of toughening provided by the interfaces in these hard/hard coatings. Another combination for the present study is with interfaces between hard-soft phases ZrN/Zr, a composite that seeks to compromise hardness in order to achieve greater toughness. The selected combination has potential of providing a model system without any substoichiometric nitrides influencing the interfacial structure. There is a great need to optimize the metal fraction/thickness for exploiting the benefits of toughening without much compromise on hardness and stiffness, since the principal applications of these coatings lies in preventing erosive and corrosive wear.
As all the deformation modes in theses coatings are stress driven, the influence of different variables on stress field would dictate the emerging damage. To understand the role of stress fields on contact damage, finite element method and an analytical model was used to predict the stress field within the coating.
The TiAlN/TiN coatings were deposited by cathodic arc evaporation, while sputtering was employed to procure the ZrN/Zr multilayer coatings with much finer layer spacing. Microstructural characterization of the as received coatings was done by XRD, scanning electron microscopy, focused ion beam cross section machining and transmission electron microscopy. Mechanical properties like hardness and modulus were evaluated by nanoindentation with restricted penetration depths to allow measurements that were not influenced by the substrate. Contact damage was induced by micro indentation at high loads. Indentations were examined from plan view as well as cross section for getting details of crack nucleation as well as propagation trajectories. Focused ion beam was used to examine cross sections of indents as well as to prepare electron transparent thin foils for transmission electron microscopy examination of subsurface damage induced by indentation. To emphasize specific issues in detail, the present work is divided into four sections:
1 Microstructure and mechanical characterization of the as deposited coatings of ZrN/Zr multilayer (while that of TiAlN/TiN has been reported elsewhere)
2 Details of contact damage in ZrN/Zr coating
3 Resolution of micro mechanistic issues in TiAlN/TiN coating utilizing detailed microscopy
4 The effect of change in architecture through heat-treatment of ZrN/Zr multilayer coatings on the mechanical behavior and contact damage Detailed microstructural, compositional and mechanical characterization was done on ZrN/Zr as received multilayer coatings. Thickness of metal layer was seen to influence the texture in the nitride, thick metal acquiring basal texture in turn inducing (111) texture in the nitride to reduce interfacial energy. Microstructure revealed that the nitride grows with interrupted columnar grains, renucleating at each metal/nitride interface. Presence of both phases was confirmed at even very low bilayer spacing, with slight changes in multilayers architecture, from planar interfaces to curved interfaces. The chosen system proved to be an ideal system for multilayer study without formation of secondary nitrides. Residual stress and hardness reduced with increase in metal layer thickness, whereas modulus was seen to follow the rule of mixture value.
Detailed contact damage study of ZrN/Zr is reported in section two with influence of volume fraction and metal layer thickness. All the experimental results were corroborated with finite element methods. A comparative study of contact damage of multilayer with monolayer was carried out with cross section as well as plan view of indents. Metal plasticity was able to distribute damage laterally as well as vertically, hence reducing the stress concentration. There lies an optimum thickness of the metal providing maximum toughening by increasing the threshold load required for edge cracking. The sliding of columns is resisted by the metal. However, thick metal layers promote microcracking in individual nitride layers. Cracking is restricted to within individual nitride layers, eliminating through thickness cracking. The intermediate metal thickness was able to provide a mechanism of laterally distributing sliding and hence a higher tolerance level of the indentation strain that can be accommodated without cracking. Thin metal multilayers were seen to show delamination, strongly influenced by the multilayer architecture. We use the finite element method to understand the influence of stress fields in driving these various modes of damage for varying volume fraction and metal layer thicknesses. It is demonstrated how metal plasticity results in stress enhancement in the nitride layer compared to a monolayer and reduces the shear stress, which is the driving force for columnar sliding. The micro cracking to columnar shearing transition with metal thickness was explained with the help of average shear and normal stress across the multilayer which could explain the transition from cracking and sliding to interfacial delamination in thin metal layer multilayers with enhancement in interfacial shear stress.
TiAlN/TiN multilayer allowed to exploit a form of compositional contrast to measure the strain with respect to depth. Layers acting as strain markers quantify the amount of sliding in terms of the offset in layers with respect to depth within the coating. We illustrate with transmission electron micrographs, the flaw generation that occurs as a result of sliding of misaligned column boundaries. These boundary kinks,upon further loading, may lead to cracks running at an angle to the indentation axis in an otherwise dense, defect free, as deposited coating. A previous study illustrates the increase in resistance of multilayers to multiple modes of cracking that are seen in the monolayer nitride coatings on steel substrates. We provide evidence of the enhanced plasticity, seen as macroscopic bending, which in reality is column sliding in a series of distributed small steps. We discuss the role of misfit dislocations in spreading the material laterally to accommodate the constraints during indentation and lattice bending. Interfacial sliding is seen to reduce the stress concentration by distributing the vertical column sliding and accommodating the flaws generated by the sliding of misaligned column boundaries. Some preferred boundaries with special orientation relations do slide, while near the substrate, the sliding is facilitated by the relaxation in intrinsic residual stresses. An analytical model which was formulated earlier is used to support our experimental findings.
Investigations of the plausible reasons for the naturally occurring multilayer mollusc sea shells to reach stiffnesses equal to the upper bound of the rule of mixture value have concluded that its brick and mortar organization is responsible for its exceptional mechanical properties. Inspired by the same model, heat treatment was used to change the architecture of the soft-hard metal/nitride combination from that of the planar interface of the as deposited multilayer to a brick and mortar arrangement. Such an interconnected ZrN microstructure was successfully achieved and the stiffness and hardness were both seen to increase relative to the as received coatings. The possible reasons for this enhancement are discussed in term of this newly emerged architecture ,change in residual stress as well as changes in stoichiometry after heat treatment. The contact damage, though, was found to be more catastrophic relative to the as deposited coating with increased propensities for edge and lateral cracking. This was attributed to the interconnected nitrides formed in the brick and mortar architecture as well as residual stress changes due to the dissolution of Zr in ZrN to form off-stoichiometric nitrides. The cracks feel the presence of the metal and deviate from the otherwise smooth trajectory and take a path along the interface of the metal packet and the interconnected nitride.
Summarizing, the present study clearly illustrates the fact that interfaces play an important role in damage control under contact loading. Fracture and deformation are either controlled by metal plasticity, distributing the column sliding in metal/nitride multilayers or by interfacial sliding mediated by interfacial misfit dislocations in case of the nitride/nitride multilayer coatings. The effective role of interfaces is to distribute damage laterally as well as horizontally to relieve stresses and hence enhance the damage tolerance under indentation. Optimum metal layer thickness has been proposed for maximum toughening in the metal/nitride multilayer coating and the role of interfaces in providing modes of plasticity is presented for the nitride/nitride multilayer coatings by use of extensive transmission electron microscopic investigations. A new interconnected architecture coatings provides a unique way of combining stiffness and toughness along with scope for further developing such configurations with improved mechanical properties.
|
468 |
PROTECTION OPTIMIZATION OF CARBON-CARBON COMPOSITES AGAINST AIR OXIDATION BY COATING WITH ANTI-OXIDANTSOues, Adnan Khalil 01 May 2017 (has links)
AN ABSTRACT OF THE DISSERTATION OF TITLE: (OPTIMIZATION PROTECTION OF CARBOB-CARBON COMPOSITES DISC-BRAKES MATERIAL BY COATING WITH ANTI-OXIDANTS) Developing glass enhancer mixture solutions (Ki’s), which promote the formation of a stable glass layer, homogenous clear liquid solution, and low viscosity liquid form, are easy to apply, and penetrating. They are compatible with ceramic liquid glass based anti-oxidants for treating surfaces of carbon/carbon composites material, and significantly increase the rate of protection against oxidation. Ki’s’ are comprised of mixing chemical compositions at standard temperature and pressure conditions from group one and two such as Na, K, Ca, Mg, etc. of 5 to 25 wt. %, deionized water from 95 to 75 % by weight, and adding up to 1 % by weight of surfactants such as DF-16, DF-20, and CF-10 with specific proportions, and followed by thorough stirring to produce a homogeneous blend of mixture solution. The glass enhancers, which are aqueous mixture solutions, are applied to the surfaces of carbon/carbon (C/C) composites by dipping, brushing, spraying, or other painting application techniques, followed by annealing, or a heat-treating range of 80 to 110 ℃ for a minimum of 8 hours, and allowing cooling time of the coated C/C composites of a minimum of 12 hours to room temperature. Preferential compatibility of the glass enhancer mixture solutions (Ki's) is with liquid glass former's, anti-oxidants comprised mostly of borate and phosphate glasses. The glass enhancer solution mixtures (Ki’s) are supplemental additions to ceramics’ liquid anti-oxidants coatings used for carbon-carbon composites protection against oxidation, and it will increase the rate of protection against oxidation for low, and moderate temperature’s range from 400 to 900 ℃. The glass enhancer Ki’s mixture solutions should be used with liquid glass former's’ anti-oxidants, such as SiO₂, GeO₂, B₂O₃, and P₂O₅. A series of glass enhancer’s Ki’s, heat treatment cycle (char-cycle) ranged between 700 to 900 ℃, and application methods, were developed and tested experimentally. Two arbitrary isothermal temperatures of 650 ℃, and 871 ℃ were selected for thermal oxidation testing, and a temperature of 650 ℃ was selected, and tested against catalytic thermal oxidation. Additions of glass enhancer Ki’s improved protection of C/C composites disc-brakes against oxidation by double, and triple amount of time in hours versus the use of anti-oxidant coatings alone.
|
469 |
Vermeidungsstrategien fluiddynamischer Effekte beim Einsatz von Schnellerwärmungstechnologien in der WarmumformungOpitz, Tobias 20 January 2021 (has links)
Aufgrund fluiddynamischer Effekte bei der Schnellerwärmung für die Warmumformung wird die Applikation der Technologie erschwert. Die vorliegende Arbeit thematisiert diesen Effekt und evaluiert die Triebkräfte sowohl numerisch als auch im Experiment. Aufbauend darauf werden Vermeidungsstrategien aufgezeigt und experimentell validiert um eine Verschiebung der Beschichtung zu verhindern. Es können insbesondere die temperatursensitive Marangonikraft als auch die magnethydrodynamische Wirkung der Lorentzkraft bei einer induktiven Erwärmung als Haupttriebkräfte identifiziert werden, die sich aufgrund identischer Kraftvektorrichtungen überlagern und verstärken. Es hat sich gezeigt, dass für den vorliegenden Fall einer 20-30 μm dünnen AlSi-Beschichtung die Marangonikraft gegenüber der Lorentzkraft um einen Faktor von mindestens 68 überwiegt. Ein vergleichbarer Effekt ist auch bei konduktiver Erwärmung zu beobachten. Hinsichtlich möglicher Vermeidungsstrategien einer globalen Beschichtungsverschiebung bietet die Applikation von lokalen Flussbarrieren mittels Laser, Induktion oder Walztexturierung, sowie das Vermeiden einer freien Flüssigkeitsoberfläche durch Aufbringen einer Zusatzbeschichtung, das größte Potential.
In der zweiten Versionierung der Dissertationsschrift wurde auf S. IV im Vorwort, sowie auf S.72, Kapitel 4.2 eine ergänzende Nennung eines Instituts und Kooperationspartners hinzugefügt. / The application of fast heating technologies for hot forming is hindered by fluiddynamic effects and a resulting coating shift. Present thesis investigates this effect to evaluate the driving forces numerically as well as experimentally. Based on this evaluation, strategies are developed and investigated to avoid a global displacement of the AlSi-coating. In case of inductive fast heating the main driving force is represented by a superposition of Lorentzian forces as well as surface tension related Marangoni forces with a force vector pointing from hot to cold regions on the blank. The numerical evaluation shows that in case of 20-30 μm thin layers of AlSi the Marangoni force is at least 68 times higher than the Lorentz force and therefore represents the main driving force. A comparable effect is observable in case of conduction heating. Local flow barriers realized by Laser, inductive heating or texturing as well as the avoidance of a free liquid-surface due to application of additional coating layers show huge potential to prevent a global coating flow.
|
470 |
Vermeidungsstrategien fluiddynamischer Effekte beim Einsatz von Schnellerwärmungstechnologien in der WarmumformungOpitz, Tobias 05 September 2018 (has links)
Aufgrund fluiddynamischer Effekte bei der Schnellerwärmung für die Warmumformung wird die Applikation der Technologie erschwert. Die vorliegende Arbeit thematisiert diesen Effekt und evaluiert die Triebkräfte sowohl numerisch als auch im Experiment. Aufbauend darauf werden Vermeidungsstrategien aufgezeigt und experimentell validiert um eine Verschiebung der Beschichtung zu verhindern. Es können insbesondere die temperatursensitive Marangonikraft als auch die magnethydrodynamische Wirkung der Lorentzkraft bei einer induktiven Erwärmung als Haupttriebkräfte identifiziert werden, die sich aufgrund identischer Kraftvektorrichtungen überlagern und verstärken. Es hat sich gezeigt, dass für den vorliegenden Fall einer 20-30 μm dünnen AlSi-Beschichtung die Marangonikraft gegenüber der Lorentzkraft um einen Faktor von mindestens 68 überwiegt. Ein vergleichbarer Effekt ist auch bei konduktiver Erwärmung zu beobachten. Hinsichtlich möglicher Vermeidungsstrategien einer globalen Beschichtungsverschiebung bietet die Applikation von lokalen Flussbarrieren mittels Laser, Induktion oder Walztexturierung, sowie das Vermeiden einer freien Flüssigkeitsoberfläche durch Aufbringen einer Zusatzbeschichtung, das größte Potential. / The application of fast heating technologies for hot forming is hindered by fluiddynamic effects and a resulting coating shift. Present thesis investigates this effect to evaluate the driving forces numerically as well as experimentally. Based on this evaluation, strategies are developed and investigated to avoid a global displacement of the AlSi-coating. In case of inductive fast heating the main driving force is represented by a superposition of Lorentzian forces as well as surface tension related Marangoni forces with a force vector pointing from hot to cold regions on the blank. The numerical evaluation shows that in case of 20-30 μm thin layers of AlSi the Marangoni force is at least 68 times higher than the Lorentz force and therefore represents the main driving force. A comparable effect is observable in case of conduction heating. Local flow barriers realized by Laser, inductive heating or texturing as well as the avoidance of a free liquid-surface due to application of additional coating layers show huge potential to prevent a global coating flow.
|
Page generated in 0.0357 seconds