Spelling suggestions: "subject:"[een] COLLISION AVOIDANCE SYSTEMS"" "subject:"[enn] COLLISION AVOIDANCE SYSTEMS""
1 |
Motion tracking on embedded systems: vision-based vehicle tracking using image alignment with symmetrical function.January 2007 (has links)
Cheung, Lap Chi. / Thesis (M.Phil.)--Chinese University of Hong Kong, 2007. / Includes bibliographical references (leaves 91-95). / Abstracts in English and Chinese. / Chapter 1. --- INTRODUCTION --- p.1 / Chapter 1.1. --- Background --- p.1 / Chapter 1.1.1. --- Introduction to Intelligent Vehicle --- p.1 / Chapter 1.1.2. --- Typical Vehicle Tracking Systems for Rear-end Collision Avoidance --- p.2 / Chapter 1.1.3. --- Passive VS Active Vehicle Tracking --- p.3 / Chapter 1.1.4. --- Vision-based Vehicle Tracking Systems --- p.4 / Chapter 1.1.5. --- Characteristics of Computing Devices on Vehicles --- p.5 / Chapter 1.2. --- Motivation and Objectives --- p.6 / Chapter 1.3. --- Major Contributions --- p.7 / Chapter 1.3.1. --- A 3-phase Vision-based Vehicle Tracking Framework --- p.7 / Chapter 1.3.2. --- Camera-to-vehicle Distance Measurement by Single Camera --- p.9 / Chapter 1.3.3. --- Real Time Vehicle Detection --- p.10 / Chapter 1.3.4. --- Real Time Vehicle Tracking using Simplified Image Alignment --- p.10 / Chapter 1.4. --- Evaluation Platform --- p.11 / Chapter 1.5. --- Thesis Organization --- p.11 / Chapter 2. --- RELATED WORK --- p.13 / Chapter 2.1. --- Stereo-based Vehicle Tracking --- p.13 / Chapter 2.2. --- Motion-based Vehicle Tracking --- p.16 / Chapter 2.3. --- Knowledge-based Vehicle Tracking --- p.18 / Chapter 2.4. --- Commercial Systems --- p.19 / Chapter 3. --- 3-PHASE VISION-BASED VEHICLE TRACKING FRAMEWORK --- p.22 / Chapter 3.1. --- Introduction to the 3-phase Framework --- p.22 / Chapter 3.2. --- Vehicle Detection --- p.23 / Chapter 3.2.1. --- Overview of Vehicle Detection --- p.23 / Chapter 3.2.2. --- Locating the Vehicle Center - Symmetrical Measurement --- p.25 / Chapter 3.2.3. --- Locating the Vehicle Roof and Bottom --- p.28 / Chapter 3.2.4. --- Locating the Vehicle Sides - Over-complete Haar Transform --- p.30 / Chapter 3.3. --- Vehicle Template Tracking Image Alignment --- p.37 / Chapter 3.3.5. --- Overview of Vehicle Template Tracking --- p.37 / Chapter 3.3.6. --- Goal of Image Alignment --- p.41 / Chapter 3.3.7. --- Alternative Image Alignment - Compositional Image Alignment --- p.42 / Chapter 3.3.8. --- Efficient Image Alignment - Inverse Compositional Algorithm --- p.43 / Chapter 3.4. --- Vehicle Template Update --- p.46 / Chapter 3.4.1. --- Situation of Vehicle lost --- p.46 / Chapter 3.4.2. --- Template Filling by Updating the positions of Vehicle Features --- p.48 / Chapter 3.5. --- Experiments and Discussions --- p.49 / Chapter 3.5. 1. --- Experiment Setup --- p.49 / Chapter 3.5.2. --- Successful Tracking Percentage --- p.50 / Chapter 3.6. --- Comparing with other tracking methodologies --- p.52 / Chapter 3.6.1. --- 1-phase Vision-based Vehicle Tracking --- p.52 / Chapter 3.6.2. --- Image Correlation --- p.54 / Chapter 3.6.3. --- Continuously Adaptive Mean Shift --- p.58 / Chapter 4. --- CAMERA TO-VEHICLE DISTANCE MEASUREMENT BY SINGLE CAMERA --- p.61 / Chapter 4.1 --- The Principle of Law of Perspective --- p.61 / Chapter 4.2. --- Distance Measurement by Single Camera --- p.62 / Chapter 5. --- REAL TIME VEHICLE DETECTION --- p.66 / Chapter 5.1. --- Introduction --- p.66 / Chapter 5.2. --- Timing Analysis of Vehicle Detection --- p.66 / Chapter 5.3. --- Symmetrical Measurement Optimization --- p.67 / Chapter 5.3.1. --- Diminished Gradient Image for Symmetrical Measurement --- p.67 / Chapter 5.3.2. --- Replacing Division by Multiplication Operations --- p.71 / Chapter 5.4. --- Over-complete Haar Transform Optimization --- p.73 / Chapter 5.4.1. --- Characteristics of Over-complete Haar Transform --- p.75 / Chapter 5.4.2. --- Pre-compntation of Haar block --- p.74 / Chapter 5.5. --- Summary --- p.77 / Chapter 6. --- REAL TIME VEHICLE TRACKING USING SIMPLIFIED IMAGE ALIGNMENT --- p.78 / Chapter 6.1. --- Introduction --- p.78 / Chapter 6.2. --- Timing Analysis of Original Image Alignment --- p.78 / Chapter 6.3. --- Simplified Image Alignment --- p.80 / Chapter 6.3.1. --- Reducing the Number of Parameters in Affine Transformation --- p.80 / Chapter 6.3.2. --- Size Reduction of Image A ligmnent Matrixes --- p.85 / Chapter 6.4. --- Experiments and Discussions --- p.85 / Chapter 6.4.1. --- Successful Tracking Percentage --- p.86 / Chapter 6.4.2. --- Timing Improvement --- p.87 / Chapter 7. --- CONCLUSIONS --- p.89 / Chapter 8. --- BIBLIOGRAPHY --- p.91
|
2 |
An automated cyclist collision avoidance system for heavy goods vehiclesJia, Yanbo January 2015 (has links)
No description available.
|
3 |
Development of granular-medium-based energy management system for automotive bumper applicationsMwangi, Maina Festus January 2009 (has links)
Thesis submitted in compliance with the requirements of the Master's Degree in Technology: Mechanical Engineering, Durban University of Technology, 2009. / Automotive bumpers are installed primarily to minimize damage and harm to both the automobile and passengers during minor and low speed collisions. The efficacy of the current bumper systems lies in absorbing the impact energy. The primary mechanism for energy absorption is damage.
In this study an attempt is made to shift from this traditional design platform by exploring non-destructive energy dissipation mechanisms. In pursuit of this, an alternative bumper system that simulates human-arm ergonomic response to impact has been proposed. The system capitalizes on the characteristic dissipative mechanics of granular media.
A mathematical model describing the dissipative mechanics of the system is presented. The model shows that granular media can be used effectively to re-direct the impulse wave away from its axis of incidence. The resulting effect is that the impulse wave is attenuated through the thickness. A second mathematical model, based on the Concept of Energy Balance has been developed. Here, the total impact energy is shown to be absorbed or dissipated by the individual components of the system. The largest component of this energy is taken up by sliding and rotation of the granular media. Both models are validated by experimentation.
A prototype system has been built and tested. The system effectively manages impact energy with minimal or no damage to the constituent components. The system demonstrates an ability to recover dimensionally when loaded under FMVSS conditions. / Post Graduate Development Support
|
4 |
An investigation into road safety education in KwaZulu-NatalSunker, Neeraj January 2005 (has links)
Thesis (M.Tech.:Civil Engineering)-Dept of Civil Engineering and Survey, Durban Institute of Technology, 2005
xiv, 134 leaves, Annexures A-C / Road fatalities claim more than one million lives annually worldwide. The emotional, social and economic impact of road traffic fatalities demands urgent attention globally. This epidemic of road traffic fatalities is plaguing everyone, especially the poorer nations. Some countries like Australia and Sweden have been more successful than others in combating this epidemic.
South Africa is currently seeking strategies to combat this epidemic because South Africa’s road traffic fatalities have been increasing annually, with a substantial percentage of teenagers and young adults between the ages of 16 and 29 contributing to these statistics. This age group will become or already have become part of the economically active population and concern is mounting as to why this particular age group is vulnerable.
This thesis provides an overview of the road safety problem globally, nationally, provincially and locally and also looks at the historical factors that have contributed to this problem. The Victorian model, which has been classified as the ‘world’s best practice’, has been reviewed.
A pilot survey was conducted at the Mangosuthu Technikon and the focal survey was conducted at the tertiary institutions in the Durban area. Students from this sector were selected as they fall in the most vulnerable age group and data was collected from them on various aspects of road safety.
On analysing the data, various problems were identified, in particular, lack of resources and limited education pertaining to road safety. A range of possible solutions is recommended and the focus areas are the 3E’s namely: education, enforcement and engineering. However, the focal recommendation is on education and looks at the possibility of introducing learner’s licence testing to the grade 12 syllabi.
|
5 |
Game theoretical modelling of a driver's interaction with active steeringNa, Xiaoxiang January 2014 (has links)
No description available.
|
6 |
An investigation into road safety education in KwaZulu-NatalSunker, Neeraj January 2005 (has links)
Thesis (M.Tech.:Civil Engineering)-Dept of Civil Engineering and Survey, Durban Institute of Technology, 2005
xiv, 134 leaves, Annexures A-C / Road fatalities claim more than one million lives annually worldwide. The emotional, social and economic impact of road traffic fatalities demands urgent attention globally. This epidemic of road traffic fatalities is plaguing everyone, especially the poorer nations. Some countries like Australia and Sweden have been more successful than others in combating this epidemic.
South Africa is currently seeking strategies to combat this epidemic because South Africa’s road traffic fatalities have been increasing annually, with a substantial percentage of teenagers and young adults between the ages of 16 and 29 contributing to these statistics. This age group will become or already have become part of the economically active population and concern is mounting as to why this particular age group is vulnerable.
This thesis provides an overview of the road safety problem globally, nationally, provincially and locally and also looks at the historical factors that have contributed to this problem. The Victorian model, which has been classified as the ‘world’s best practice’, has been reviewed.
A pilot survey was conducted at the Mangosuthu Technikon and the focal survey was conducted at the tertiary institutions in the Durban area. Students from this sector were selected as they fall in the most vulnerable age group and data was collected from them on various aspects of road safety.
On analysing the data, various problems were identified, in particular, lack of resources and limited education pertaining to road safety. A range of possible solutions is recommended and the focus areas are the 3E’s namely: education, enforcement and engineering. However, the focal recommendation is on education and looks at the possibility of introducing learner’s licence testing to the grade 12 syllabi.
|
7 |
Lane departure avoidance systemMukhopadhyay, Mousumi 08 1900 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / Traffic accidents cause millions of injuries and tens of thousands of fatalities per year worldwide. This thesis briefly reviews different types of active safety systems designed to reduce the number of accidents. Focusing on lane departure, a leading cause of crashes involving fatalities, we examine a lane-keeping system proposed by Minoiu Enache et al.They proposed a switched linear feedback (LMI) controller and provided two switching laws, which limit driver torque and displacement of the front wheels from the center of the lane.
In this thesis, a state feedback (LQR) controller has been designed. Also, a new switching logic has been proposed which is based on driver's torque, lateral offset of the vehicle from the center of the lane and relative yaw angle. The controller activates assistance torque when the driver is deemed inattentive. It is deactivated when the driver regains control. Matlab/Simulink modeling and simulation environment is used to verify the results of the controller. In comparison to the earlier switching strategies, the maximum values of the state variables lie very close to the set of bounds for normal driving zone. Also, analysis of the controller’s root locus shows an improvement in the damping factor, implying better system response.
|
8 |
Blink behaviour based drowsiness detection : method development and validation /Svensson, Ulrika. January 2004 (has links)
Thesis (M.S.)--Linköping University, 2004. / Includes bibliographical references (p. 63-64). Also available online via the VTI web site (www.vti.se).
|
9 |
Adaptive QoS control of DSRC vehicle networks for collaborative vehicle safety applicationsGuan, Wenyang January 2013 (has links)
Road traffic safety has been a subject of worldwide concern. Dedicated short range communications (DSRC) is widely regarded as a promising enabling technology for collaborative safety applications (CSA), which can provide robust communication and affordable performance to build large scale CSA system. The main focus of this thesis is to develop solutions for DSRC QoS control in order to provide robust QoS support for CSA. The first design objective is to ensure robust and reliable message delivery services for safety applications from the DSRC networks. As the spectrum resources allocated to DSRC network are expected to be shared by both safety and non-safety applications, the second design objective is to make QoS control schemes bandwidth-efficient in order to leave as much as possible bandwidth for non-safety applications. The first part of the thesis investigates QoS control in infrastructure based DSRC networks, where roadside access points (AP) are available to control QoS control at road intersections. After analyse DSRC network capabilities on QoS provisioning without congestion control, we propose a two-phases adaptive QoS control method for DSRC vehicle networks. In the first phase an offline simulation based approach is used to and out the best possible system configurations (e.g. message rate and transmit power) with given numbers of vehicles and QoS requirements. It is noted that with different utility functions the values of optimal parameters proposed by the two phases centralized QoS control scheme will be different. The conclusions obtained with the proposed scheme are dependent on the chosen utility functions. But the proposed two phases centralized QoS control scheme is general and is applicable to different utility functions. In the second phase, these configurations are used online by roadside AP adaptively according to dynamic traffic loads. The second part of the thesis is focused on distributed QoS control for DSRC networks. A framework of collaborative QoS control is proposed, following which we utilize the local channel busy time as the indicator of network congestion and adaptively adjust safety message rate by a modified additive increase and multiplicative decrease (AIMD) method in a distributed way. Numerical results demonstrate the effectiveness of the proposed QoS control schemes.
|
10 |
[de] ENTWICKLUNG EINES KOLLISIONSVERMEIDUNGSSYSTEM BASIEREND AUF EINER FUZZY REGELUNG / [en] DEVELOPMENT OF AN AUTONOMOUS COLLISION AVOIDANCE SYSTEM BASED ON FUZZY CONTROL / [pt] DESENVOLVIMENTO DE UM SISTEMA AUTÔNOMO DE EVASÃO DE COLISÕES BASEADO EM CONTROLE FUZZYRAFAEL BASILIO CHAVES 09 February 2018 (has links)
[pt] O presente trabalho apresenta um conceito para um sistema de evasão de colisões, simulado usando modelos 3D de três veículos diferentes implementados em MATLAB. Dois destes veículos foram parametrizados com dados genéricos, caracterizando automóveis de médio e grande porte. Em seguida, utilizados para realização de simulações iniciais e demonstração de conceitos. O terceiro conjunto de dados foi construído com informações do Apollo N, um veículo super esportivo. Estes diferentes conjuntos de dados foram utilizados para avaliar a capacidade do controlador de trabalhar com veículos de diferentes portes e dinâmicas de direção. A abordagem para acionar o sistema baseia-se no cálculo do tempo para a colisão (TTC; timeto- collision). O conceito foi adotado para detectar situações onde o motorista
não é capaz de evitar um acidente. Depois de ser acionado, o sistema deve decidir qual manobra é a mais apropriada, dadas as condições de aderência da pista e o risco associado. O primeiro objetivo deste trabalho é desenvolver um sistema autônomo de frenagem que deve ser capaz de avaliar o risco de uma possível colisão e decidir se o condutor é capaz de evitá-la. Uma vez que o motorista não tenha tempo suficiente para reagir, o sistema deve acionar os freios automaticamente a fim de evitar um possível acidente. Além disso, o veículo possui um sistema anti-travamento (ABS), desenvolvido usando
controle Fuzzy. O desempenho do controlador ABS foi avaliado em simulações usando os conjuntos de dados e testado em um veículo em escala. Em casos mais críticos, quando há baixa aderência, o veículo não é capaz de frear em uma distância razoável. Levando-se em consideração tal situação, um controle autônomo de esterçamento também foi desenvolvido, visando a possibilidade de uma manobra alternativa de evasão. Este segundo sistema foi avaliado em simulações utilizando veículos com características subesterçantes e sobreesterçantes. Os resultados mostraram que o controle de esterçamento foi capaz de realizar manobras evasivas produzindo valores razoáveis de acelerações laterais, em veículos com diferentes dinâmicas de direção. / [en] This work presents a concept for a collision avoidance system simulated using 3D-models of three different vehicles implemented in MATLAB. Two of the vehicle data sets were built with generic information, used to
characterize mid-size and full-size vehicles. These standard vehicles were used in initial simulations and for demonstration of some concepts. The third data set was built with information from the Apollo N, a super sportive car. These different data sets were used to evaluate the controller s capacity to work with a range of vehicles, with different sizes and driving characteristics. The approach for triggering the system is based on the time-to-colision (TTC) estimation. This concept was adopted to recognize when the driver is not able to avoid an accident. After being triggered, the system must decide which maneuver is the most appropriate for the given friction and risk conditions. The first goal of this work is to develop an autonomous braking system which evaluates the risk of a possible collision and decides if the driver is able to avoid it. Once the driver has not enough time to react, the system must trigger the brakes automatically in order to avoid the accident. The vehicle is equipped with an embedded Anti-lock Brake System (ABS)
developed using Fuzzy control. The ABS controller s performance was evaluated in simulations using the data sets and tested in a scaled vehicle. In more critical cases, when there is low friction, the vehicle is not able to brake in a reasonable distance. Considering this situation, an autonomous steering control was implemented in order to make an alternative avoidance maneuver. This second system was evaluated in simulations using vehicles with understeering and oversteering characteristics. The results pointed out that the autonomous steering control was able to perform avoidance maneuvers in a reasonable range of lateral accelerations, in vehicles with different driving tendencies. / [de] Die vorliegende Arbeit prasentiert ein Konzept fur ein Kollisionsvermeidungssystem. Dieses wird anhand von drei verschiedenen 3DFahrzeugmodellen mit Hilfe von MATLAB simuliert. Zwei der FahrzeugDatensatze
basieren auf generischen Informationen, die jeweils ein Automobil der Mittelklasse und der Oberklasse reprasentieren. Diese Standardfahrzeuge wurden fur anfangliche Simulationen und zur Demonstration einiger Konzepte verwendet. Das dritte Fahrzeugmodell wurde mit Hilfe der Daten des Sportwagens
Apollo N aufgebaut. Durch die Verwendung der verschiedenen Datensatze soll die Funktionsfahigkeit der Regelung auch bei verschiedenen Fahrzeugtypen mit unterschiedlichen Dimensionen und Fahreigenschaften uberpruft werden.Die Grundlage zum Auslosen des Systems ist die Abschatzung der Zeit bis zur Kollision (TTC; time-to-collision). Dieses Konzept wurde aufgegriffen, um zu entscheiden, wann der Fahrer nicht mehr in der Lage ist einen Unfall zu vermeiden. Nachdem das System ausgelost wird muss dieses anhand der Traktionsverhaltnisse und Gefahrensituation entscheiden, welches Manover am besten geeignet ist. Das erste Teilziel ist die Entwicklung eines autonomen Bremssystems, welches eine bevorstehende Kollision erkennen muss und entscheidet ob der Fahrer die Kollision eigenstandig vermeiden kann. Sobald
der Fahrer nicht mehr genug Zeit hat selbst zu reagieren, muss das System die Bremsen automatisch betatigen um den Unfall zu vermeiden. Hierzu ist das Fahrzeug mit einem Antiblockiersystem (ABS) ausgestattet. Dieses wurde mit Hilfe eines Fuzzy-Kontrollers realisiert. Die Funktionstuchtigkeit der
ABS-Regelung wurde mit Simulationen und anhand eines realen, skalierten Fahrzeugmodells getestet. In kritischen Situationen, kann es aufgrund der Traktionsverhaltnisse vorkommen, dass das Fahrzeug nicht mehr in der Lage ist innerhalb einer ausreichenden Strecke zum Stehen zu kommen. Um fur solche Situationen ein alternatives Ausweichmanöver anwenden zu konnen, wurde ein automatischer Lenkeingriff implementiert. Dieses System wurde anhand von Simulationen an Fahrzeugmodellen mit Ubersteuernden und Untersteuernden Eigenschaften uberprüft. Die Ergebnisse zeigten, dass die automatische Lenkeingriff-Regelung in der Lage war auch bei Fahrzeugen mit unterschiedlichen Fahreigenschaften Ausweichmanöver unter Einhaltung angemessener Querbeschleunigungen durchzufuhren.
|
Page generated in 1.3123 seconds