• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 7
  • 7
  • 6
  • 2
  • 1
  • Tagged with
  • 57
  • 57
  • 45
  • 42
  • 13
  • 13
  • 11
  • 10
  • 8
  • 8
  • 8
  • 7
  • 7
  • 6
  • 6
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Otimização topológica de mecanismos flexíveis com controle da tensão máxima considerando não linearidades geométrica e material / Topology optimization of compliant mechanisms with maximum stress

De Leon, Daniel Milbrath January 2015 (has links)
Mecanismos flexíveis, nos quais a deformação elástica é aproveitada na atuação cinemática, têm grande empregabilidade em dispositivos de mecânica de precisão, engenharia biomédica, e mais recentemente em microeletromecanismos (MEMS). Entre as diversas técnicas empregadas para o seu projeto, a otimização topológica tem se mostrado a mais genérica e sistemática. A grande dificuldade destes projetos é conciliar os requisitos cinemáticos com a resistência mecânica da estrutura. Neste trabalho, é implementado um critério de resistência dentro da formulação do problema de otimização, com o intuito de gerar mecanismos que cumpram a tarefa cinemática desejada mas ao mesmo tempo não ultrapassem limites de tensão predeterminados. Esta restrição adicional também visa aliviar o problema bastante conhecido do aparecimento de articulações. Não linearidade geométrica e de material (hiperelasticida de compressível) são implementadas na solução das equações através do método dos elementos finitos para levar em conta os grandes deslocamentos do mecanismo. O método das assíntotas móveis é usado para a atualização das variáveis de projeto. As derivadas do problema de otimização são calculadas analiticamente, pelo método adjunto. Técnicas de projeção são aplicadas para a garantia de topologias livres de instabilidades numéricas comuns em otimização topológica, e projetos otimizados mais próximos de um espaço 0/1 para as densidades físicas. / Compliant me hanisms, in whi h the elasti strain is the basis for kinemati a tua- tion are widely used in pre ision me hani s devi es, biomedi al engineering, and re ently in mi roele trome hani al systems (MEMS). Among several te hniques applied in ompliant me hanisms design, topology optimization has been one of the most general and systemati . The great hallenge in these designs is to ouple both the kinemati s and the me hani al strength riteria requirements. In this work, a strength riteria for the optimization problem is applied, with the aim of generating ompliant me hanisms that ful ll the desired kine- mati tasks while omplying with a stress threshold. The addition of a stress onstraint to the formulation for ompliant me hanisms in topology optimization also aims to allevi- ate the appearan e of hinges in the optimized topology, a well known issue in the design of ompliant me hanisms. Geometri al and material ( ompressible hyperelasti ity) nonlin- earities are applied to the nite element equilibrium equations, to take into a ount large displa ements. The method of moving asymptotes is applied for design variables updating. The derivatives are al ulated analyti ally, by the adjoint method. Proje tion ltering te h- niques are applied, in order to guarantee topologies free of ommon numeri al instabilities in topology optimization, and optimized designs near the 0/1 solution for the physi al densities.
22

Waterproofing Shape-Changing Mechanisms Using Origami Engineering; Also a Mechanical Property Evaluation Approach for Rapid Prototyping

Katz, Andrew Jason 07 June 2016 (has links)
My work has been focused on compliant mechanisms, origami engineering, and rapid prototyping. Two of the projects that I worked on were focused on compliant mechanisms and origami engineering. The similar goal of both of those projects was to create an origami membrane whose kinematics mimic that of an existing mechanism. The first project created an origami membrane to mimic the kinematics of a planar shape-changing mechanism. This mechanism was a square shaped unit-cell which could shear, compress, and expand in its own plane. In addition to waterproofing the mechanism, the first project also sought to optimize the dimensions of the mechanism in order to reduce internal stresses during actuation. The results of the optimization portion of this project were a reduction of internal stresses by more than 22%. The results of the origami synthesis portion of the project was the creation of a membrane with an origami pattern whose kinematics mimic that of the shape-shifting surface. The origami membrane is capable of being folded into each of the various positions that the shape-shifting surface is able to fold into. The second project sought to create a similar type of origami fold pattern, but for a Shape Morphing Space Frame (SMSF). This project created an origami membrane designed to mimic the kinematics of a mechanism that had been developed in a different previous project. The mechanism consisted of a series of Linear Bistable Elements (LBEs) which were assembled to form a cylinder. When the LBEs were actuated the cylinder would deform to a hyperboloid. This project created an origami membrane whose kinematics mimic that of the shape-morphing space frame and was able to change side length by more than 30%. The origami membrane was able to fold to each of the SMSF’s states. This project also developed a method for synthesizing an origami fold pattern with shape-morphing triangles. Both of the first two projects that comprise this dissertation sought to develop an origami fold pattern whose kinematics mimic that of an existing mechanism. In each of these projects one of the future goals for the project was to create a prototype where the mechanism and the origami are fabricated together as one integrated prototype. Possible methods of accomplishing this goal include rapid prototyping. Thus, the mechanics of rapid prototyping are of concern for future work on these projects. The third project developed a part which could be printed from a Fused Deposition Modeling (FDM) machine to test certain material properties (yield strength and elastic modulus) after it had been processed through the FDM. This would allow the material properties to be tested without the use of expensive test equipment. This project developed eight parts which could be used to bracket certain material properties of rapid prototyped parts after processing. The parts developed in this project were capable of bracketing the material properties of the materials in question, and were able to do so when tested across multiple FDM machines. The results of this work were stress-strain data which indicates the behavior of the part under load, and a method for inexpensively testing the material properties of rapid prototyped parts after processing.
23

Mechanical Design and Analysis: High-Precision Microcontact Printhead for Roll-to-Roll Printing of Flexible Electronics

Riza, Mehdi 02 April 2021 (has links)
Flexible electronics have demonstrated potential in a wide range of applications including wearable sensors, photovoltaics, medical devices and more, due to their properties of extreme adaptability while also being lightweight and highly robust. The main challenge standing in the way of progress in this field is the difficulty of large-scale manufacturing of these flexible electronics compared to their rigid counterparts. Microcontact printing is a form of soft lithography in which an elastomeric stamp is used to transfer sub-micron scale surface patterns onto a flexible substrate via ink monolayers. The integration of microcontact printing into a roll-to-roll (R2R) system will enable continuous printing of flexible electronics and scale it up for massive manufacturing. The proposed thesis outlines a novel mechanical design for a microcontact printer which utilizes flexural motion stages with integrated position and force sensors to control the print process on a R2R system. The printhead is designed to fit the available space on the pre-installed UMass Amherst Intelligent Sensing Laboratory test table and breadboard. The R2R system includes motorized rollers for winding/unwinding the PET (polyethylene terephthalate) web substrate, and idler rollers for guiding a web through the print system. As the central element to this design, two matching plate flexures are designed on the two ends of the printer roller to control the tilting and positioning of the print roller. Flexure mechanisms rely on bending and torsion of flexible elements: this allows them to achieve much higher precision in positioning compared to conventional mechanisms which rely on surface interaction between multiple moving parts. The print resolution target for this design is 500 nm (linewidth), based on current state-of-the-art designs [1, 2]. In the initial version of the printhead design, a total of 33 parts are custom fabricated for assembly and installation in the R2R system lab setup. These include everything from the components of the print roller, specially adapted air-bearing mounts, support structures, and connectors. The design and 4 fabrication process for every component is outlined here along with the functionality, as every component was designed with the system objectives and constraints in mind. Using SolidWorks simulation, FEA (finite element analysis) is performed for every part of the assembly that is subjected to stress in the real system, so that predictions can be made about the displacement of the motion stages and the frequency of vibration. These predictions are evaluated by comparation with the experimental results from tests conducted on the real system hardware and used to assess the quality of the fabricated assembly. The work performed in this thesis enables advancements in the assembly of an updated, optimized R2R system and has led to an experimentally functioning lab setup that is ripe for further improvements. Completion and calibration of this augmented R2R system will, in future, enable UMass Amherst in-house production of large-area flexible electronics which may be used in a wide range of applications, including medical sensors, solar cells, displays, and more. In addition to microcontact printing, this R2R system may also be applied to nanoimprint lithography, another contact-based print method, or integrated with inkjet printing, a non-contact method.
24

Joint Analysis of and Applications for Devices with Expanding Motions

Seymour, Kendall Hal 01 July 2019 (has links)
Origami has been extensively studied by engineers for its unique motions and ability to collapse to small volumes. Techniques have been studied for replicating origami-like folding motion in thick materials, but limited practical applications of these techniques have been demonstrated. Developable mechanisms are a new mechanism type that has a similar ability to collapse to a low profile. The cylindrical developable mechanism has the ability to emerge from and conform to a cylindrical surface. In this work, a few practical applications of devices with novel expanding motions are presented. The design and testing of an origami-inspired deployable ballistic barrier, which was designed by combining and modifying existing thickness accommodation techniques, is discussed. The properties of cylindrical developable mechanisms are examined and two devices designed for use with minimally invasive surgical tooling are presented. Various hinge options for small-scale cylindrical developable mechanisms are then reviewed and discussed. A planar modeling assumption for curved lamina emergent torsional joints in thin-walled cylinders is then analytically and empirically validated. Conclusions are drawn and recommendations for future work are given.
25

On Creases and Curved Links: Design Approaches for Predicting and Customizing Behaviors in Origami-Based and Developable Mechanisms

Butler, Jared J. 03 August 2020 (has links)
This work develops models and tools to help designers address the challenges associated with designing origami-based and developable mechanisms. These models utilize strain energy, kinematics, compliant mechanisms, and graphical techniques to make the design of origami-based and developable mechanisms approachable and intuitive. Origami-based design tools are expanded through two methods. First presented is a generalized approach for identifying single-output mechanical advantage for a multiple-input compliant mechanism, such as many origami-based mechanisms. The model is used to predict the force-deflection behavior of an origami-based mechanism (Oriceps) and is verified with experimental data from magnetic actuation of the mechanism. Second is a folding technique for thick-origami, called the regional-sandwiching of compliant sheets (ReCS), which creates flat-foldable, rigid-foldable, and self-deploying thick origami-based mechanisms. The technique is used to create mountain/valley assignments for each fold about a vertex, constraining motion to a single branch of folding. Strain energy in deflected flexible members is used to enable self-deployment. Three physical models, a simple single-fold mechanism, a degree-four vertex mechanism, and a full tessellation, are presented to demonstrate the ReCS technique. Developable mechanism design is further enabled through an exploration of their feasible design space. Terminology is introduced to define the motion of developable mechanisms while interior and exterior to a developable surface. The limits of this motion are identified using defined conditions. It is shown that the more difficult of these conditions may be treated as a non-factor during the design of cylindrical developable mechanisms given certain assumptions. These limits are then applied to create a resource for designing bistable developable mechanisms (BDMs) that reach their second stable positions while exterior or interior to a cylindrical surface. A novel graphical method for identifying stable positions of linkages using a single dominant torsional spring, called the Principle of Reflection, is introduced and implemented. The results are compared with a numerical simulation of 30,000+ mechanisms to identify possible incongruencies. Two tables summarize the results as the guide for designing extramobile and intramobile BDMs. In fulfilling the research objectives, this dissertation contributes to the scientific community of origami-based and developable mechanism design approaches. As a result of this work, practitioners will be better able to approach and design complex origami-based and developable mechanisms.
26

Optimization of Pseudo-Rigid-Body Models for Accurately and Efficiently Predicting Dynamics of Compliant Mechanisms

She, Yu January 2018 (has links)
No description available.
27

Articulated Spine for a Robot to Assist Children with Autism

Norton, Brandon M 01 July 2014 (has links) (PDF)
Autism spectrum disorder (ASD) affects about 1.5 million individuals in the US alone. The consequences of ASD affect families, caregivers, and social structures. This thesis adds to a growing group of people performing research on mitigating the effects of autism through robotics. Children with ASD tend to interact with robots more easily than with other humans. The goal of robotic therapy is not to help children interact with robots, but to generalize the behavior to humans. An articulated spine is a key to human emotional expression through shaping, weight shifting, and flow. Despite this importance, this feature is all but lacking in robots. The primary contribution of this work is a novel 3-link planar spine with compliant, partial-gravity-compensating springs, capable of reproducing simple emotion-conveying poses for use in robot-based therapy for children with ASD. The design was based on the movements of expression experts using motion tracking markers. This information was used to optimize the number of links in the spine and their corresponding lengths. It is the goal of this research to make robotic therapy more effective for the children, raising the potential for life-changing results.
28

Predicting the Effects of Dimensional and Material Property Variations in Micro Compliant Mechanisms

Wittwer, Jonathan W. 25 July 2001 (has links) (PDF)
Surface micromachining of micro-electro-mechanical systems (MEMS), like all other fabrication processes, has inherent variation that leads to uncertain material and dimensional parameters. To obtain accurate and reliable predictions of mechanism behavior, the effects of these variations need to be analyzed. This thesis expands already existing tolerance and uncertainty analysis methods to apply to micro compliant mechanisms. For simple compliant members, explicit equations can be used in uncertainty analysis. However, for a nonlinear implicit system of equations, the direct linearization method may be used to obtain sensitivities of output parameters to small changes in known variables. This is done by including static equilibrium equations and pseudo-rigid-body model relationships with the kinematic vector loop equations. Examples are used to show a comparison of this method to other deterministic and probabilistic methods and finite element analysis.
29

Development of In-Plane Compliant Bistable Microrelays

Gomm, Troy Alan 17 June 2003 (has links) (PDF)
Bistable microrelays have many possible applications and have the potential to reduce the size, weight, power consumption, and cost of products in which they are used. This research outlines the current state of microrelays, presents three new compliant bistable micromechanisms, and characterizes their performance as microrelays. The characterization includes a treatment of a new force-tester, a preliminary contact resistance study, contact-force measurements, switching time measurements, insertion loss, AC isolation, breakdown voltage, and DC isolation. This document also includes recommendations for further research.
30

A Self-Retracting Fully-Compliant Bistable Micromechanism

Masters, Nathan D. 24 June 2003 (has links) (PDF)
The purpose of this research is to present a class of Self-Retracting Fully-compliant Bistable Micromechanisms (SRFBM). Fully-compliant mechanisms are needed to overcome the inherent limitations of microfabricated pin joints, especially in bistable mechanisms. The elimination of the clearances associated with pin joints will allow more efficient bistable mechanisms with smaller travel. Small travel, in a linear path facilitates integration with efficient on-chip actuators. Tensural pivots are developed and used to deal with the compressive loading to which the mechanism is subject. SRFBM are modeled using the Pseudo-Rigid-Body Model and finite element analysis. Suitable configurations of the SRFBM concept have been identified and fabricated using the MUMPs process. Complete systems, including external actuators and electrical contacts are 1140 μm by 625 μm (individual SRFBM are less than 300 μm by 300 μm). These systems have been tested, demonstrating on-chip actuation of bistable mechanisms. Power requirements for these systems are approximately 150 mW. Testing with manual force testers has also been completed and correlates well with finite element modeling. Actuation force is approximately 500 μN for forward actuation. Return actuation can be achieved either by external actuators or by thermal self-retraction of the mechanism. Thermal self-retraction is more efficient, but can result in damage to the mechanism. Fatigue testing has been completed on a single device, subjecting it to approximately 2 million duty cycles without failure. Based on the SRFBM concept a number of improvements and adaptations are presented, including systems with further power and displacement reductions and a G-switch for LIGA fabrication.

Page generated in 0.0393 seconds