• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1447
  • 296
  • 111
  • 108
  • 106
  • 63
  • 28
  • 24
  • 22
  • 14
  • 13
  • 10
  • 8
  • 7
  • 7
  • Tagged with
  • 2829
  • 2829
  • 767
  • 715
  • 643
  • 619
  • 533
  • 511
  • 480
  • 476
  • 462
  • 454
  • 401
  • 392
  • 391
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
101

Control issues in high level vision

Remagnino, Paolo January 1993 (has links)
Vision entails complex processes to sense, interpret and reason about the external world. The performance of such processes in a dynamic environment needs to be regulated by flexible and reliable control mechanisms. This thesis is concerned with aspects of control in high level vision. The study of control problems in vision defines a research area which only recently has received adequate attention. Classification criteria such as scope of application, knowledge representation, control structure and communication have been chosen to establish means of comparisons between the existing vision systems. Control problems have recently become of great topical interest as a result of the basic ideas of the active vision paradigm. The proponents of active vision suggest that robust solutions to vision problems arise when sensing and analysis are controlled (i.e. purposively adjusted) to exploit both data and available knowledge (temporal context). The work reported in this thesis follows the basic tenets of active vision. It is directed at the study of control of sensor gaze, scene interpretation and visual strategy monitoring. Control of the visual sensor is an important aspect of active vision. A vision system must be able to establish its orientation with respect to the partially known environment and have control strategies for selecting targets to be viewed. In this thesis algorithms are implemented for establishing vision system pose relative to prestored environment landmarks and for directing gaze to points defined by objects in an established scene model. Particular emphasis has been placed on accounting for and propagating estimation errors arising from both measured image data and inaccuracy of stored scene knowledge. In order to minimise the effect of such errors a hierarchical scene model has been adopted with contextually related objects grouped together. Object positions are described relative to local determined landmarks and this keeps the size of errors within tolerable bounds. The scene interpretation module takes image descriptions in terms of low level features and produces a symbolic description of the scene in terms of known objects classes and their attributes. The construction of the scene model is an incremental process which is achieved by means of several knowledge sources independently controlled by separate modules. The scene interpreter has been carefully structured and operates in a loop of perception that is controlled by high level commands delivered from the system supervisor module. The individual scene interpreter modules operate as locally controlled modules and are instructed as to what visual task to perform, where to look in the scene and what subset of data to use. The module processing takes into account the existing partial scene interpretation. These mechanisms embody the concepts of spatial focus of attention and exploitation of temporal context. Robust scene interpretation is achieved via temporal integration of the interpretation. The element of control concerned with visual strategy monitoring is at the system supervisor level. The supervisor takes a user given task and decides the best strategy to follow in order to satisfy it. This may involve interrogation of existing knowledge or the initiation of new data collection and analysis. In the case of new analysis the supervisor has to express the task in terms of a set of achievable visual tasks and then these are encoded into a control word which is passed to the scene interpreter. The vocabulary of the scene supervisor includes tasks such as general scene exploration, the finding of a specific object, the monitoring of a specified object, the description of attributes of single objects or relationships between two or more objects. The supervisor has to schedule sub-tasks in such a way as to achieve a good solution to the given problem. A considerable number of experiments, which make use of real and synthetic data, demonstrate the advantages of the proposed approach by means of the current implementation (written in C and in the rule based system Clips).
102

Object recognition by region matching using relaxation with relational constraints

Ahmadyfard, Alireza January 2003 (has links)
Our objective in this thesis is to develop a method for establishing an object recognition system based on the matching of image regions. A region is segmented from image based on colour homogeneity of pixels. The method can be applied to a number of computer vision applications such as object recognition (in general) and image retrieval. The motivation for using regions as image primitives is that they can be represented invariantly to a group of geometric transformations and regions are stable under scaling. We model each object of interest in our database using a single frontal image. The recognition task is to determine the presence of object(s) of interest in scene images. We propose a novel method for afflne invariant representation of image regions in the form of Attributed Relational Graph (ARG). To make image regions comparable for matching, we project each region to an affine invariant space and describe it using a set of unary measurements. The distinctiveness of these features is enhanced by describing the relation between the region and its neighbours. We limit ourselves to the low order relations, binary relations, to minimise the combinatorial complexity of both feature extraction and model matching, and to maximise the probability of the features being observed. We propose two sets of binary measurements: geometric relations between pair of regions, and colour profile on the line connecting the centroids of regions. We demonstrate that the former measurements are very discriminative when the shape of segmented regions is informative. However, they are susceptible to distortion of regions boundaries as a result of severe geometric transformations. In contrast, the colour profile binary measurements are very robust. Using this representation we construct a graph to represent the regions in the scene image and refer to it as the scene graph. Similarly a graph containing the regions of all object models is constructed and referred to as the model graph. We consider the object recognition as the problem of matching the scene graph and model graphs. We adopt the probabilistic relaxation labelling technique for our problem. The method is modified to cope better with image segmentation errors. The implemented algorithm is evaluated under affine transformation, occlusion, illumination change and cluttered scene. Good performance for recognition even under severe scaling and in cluttered scenes is reported. Key words: Region Matching, Object Recognition, Relaxation Labelling, Affine Invariant.
103

A filtering approach to the integration of stereo and motion

Rios Figueroa, Homero Vladimir January 1993 (has links)
No description available.
104

On the design and implementation of decision-theoretic, interactive, and vision-driven mobile robots

Elinas, Pantelis 05 1900 (has links)
We present a framework for the design and implementation of visually-guided, interactive, mobile robots. Essential to the framework's robust performance is our behavior-based robot control architecture enhanced with a state of the art decision-theoretic planner that takes into account the temporal characteristics of robot actions and allows us to achieve principled coordination of complex subtasks implemented as robot behaviors/skills. We study two different models of the decision theoretic layer: Multiply Sectioned Markov Decision Processes (MSMDPs) under the assumption that the world state is fully observable by the agent, and Partially Observable Markov Decision Processes (POMDPs) that remove the latter assumption and allow us to model the uncertainty in sensor measurements. The MSMDP model utilizes a divide-and-conquer approach for solving problems with millions of states using concurrent actions. For solving large POMDPs, we present heuristics that improve the computational efficiency of the point-based value iteration algorithm while tackling the problem of multi-step actions using Dynamic Bayesian Networks. In addition, we describe a state-of-the-art simultaneous localization and mapping algorithm for robots equipped with stereo vision. We first present the Monte-Carlo algorithm sigmaMCL for robot localization in 3D using natural landmarks identified by their appearance in images. Secondly, we extend sigmaMCL and develop the sigmaSLAM algorithm for solving the simultaneous localization and mapping problem for visually-guided, mobile robots. We demonstrate our real-time algorithm mapping large, indoor environments in the presence of large changes in illumination, image blurring and dynamic objects. Finally, we demonstrate empirically the applicability of our framework for developing interactive, mobile robots capable of completing complex tasks with the aid of a human companion. We present an award winning robot waiter for serving hors d'oeuvres at receptions and a robot for delivering verbal messages among inhabitants of an office-like environment. / Science, Faculty of / Computer Science, Department of / Graduate
105

Sketch-based digital storyboards and floor plans for authoring computer-generated film pre-visuals

Matthews, Timothy January 2012 (has links)
Pre-visualisation is an important tool for planning films during the pre-production phase of filmmaking. Existing pre-visualisation authoring tools do not effectively support the user in authoring pre-visualisations without impairing software usability. These tools require the user to either have programming skills, be experienced in modelling and animation, or use drag-and-drop style interfaces. These interaction methods do not intuitively fit with pre-production activities such as floor planning and storyboarding, and existing tools that apply a storyboarding metaphor do not automatically interpret user sketches. The goal of this research was to investigate how sketch-based user interfaces and methods from computer vision could be used for supporting pre-visualisation authoring using a storyboarding approach. The requirements for such a sketch-based storyboarding tool were determined from literature and an interview with Triggerfish Animation Studios. A framework was developed to support sketch-based pre-visualisation authoring using a storyboarding approach. Algorithms for describing user sketches, recognising objects and performing pose estimation were designed to automatically interpret user sketches. A proof of concept prototype implementation of this framework was evaluated in order to assess its usability benefit. It was found that the participants could author pre-visualisations effectively, efficiently and easily. The results of the usability evaluation also showed that the participants were satisfied with the overall design and usability of the prototype tool. The positive and negative findings of the evaluation were interpreted and combined with existing heuristics in order to create a set of guidelines for designing similar sketch-based pre-visualisation authoring tools that apply the storyboarding approach. The successful implementation of the proof of concept prototype tool provides practical evidence of the feasibility of sketch-based pre-visualisation authoring. The positive results from the usability evaluation established that sketch-based interfacing techniques can be used effectively with a storyboarding approach for authoring pre-visualisations without impairing software usability.
106

Intelligent control of an automated adhesive dispensing cell

Razban, Ali January 1993 (has links)
No description available.
107

Natural image segmentation using colour information

Ismaili, Imdad Ali January 1996 (has links)
No description available.
108

The generation of 3-dimensional object representations from range images

Cosmas, John Paul January 1988 (has links)
No description available.
109

Three-dimensional reconstruction by active integration of visual cues

Toh, Peng Seng January 1990 (has links)
No description available.
110

On the recovery of images from partial information using [delta]²G filtering

Reimer, James Allen January 1987 (has links)
This thesis considers the recovery of a sampled image from partial information, based on the 'edges' or zero crossings found in ∇²G filtered versions of the image. A scheme is presented for separating an image into a family of multiresolution images, using low pass filtering, subsampling, and ∇²G filtering. A scheme is also presented for merging this family of ∇²G filtered images to rebuild the original. The recovery of each of the ∇²G filtered images from their 'edges' or zero crossings is then considered. It has been suggested that ∇²G filtered images might be characterized by their zero crossing locations. It is shown that ∇²G filtered images, filtered in 1-D or 2-D are not, in general, uniquely given within a scalar by their zero crossing locations. Two theorems in support of such a suggestion are considered. The differences between the constraints of Logan's theorem and ∇²G filtering are considered, and it is shown that the zero crossings which result from these two situations differ significantly in number and location. Logan's theorem is therefore not applicable to ∇²G filtered images. A recent theorem by Curtis on the adequacy of zero crossings of 2-D functions is also considered. It is shown that the requirements of Curtis' theorem are not satisfied by all ∇²G filtered images. Further, it is shown that it is very difficult to establish if an image meets the requirements of Curtis' theorem. Examples of different ∇²G filtered images with the same zero crossings are also presented. While not all ∇²G filtered images are uniquely characterized by their zero crossing locations, the practical recovery of real camera images from this partial information is considered. An iterative scheme is developed for the reconstruction of a ∇²G filtered image from its sampled zero crossings. The zero crossing samples are localized to the original image sample grid. Experimental results are presented which show that the recovered images, while retaining many of the features of the original, suffer significant loss. It is shown that, in general, the full recovery of these images in a practical situation is not possible from this partial information. From this experimental experience, it is proposed that ∇²G filtered images might be practically recovered from their zero crossings, with some additional characterization of the image in the vicinity of each zero crossing point. A simple, non-iterative scheme is developed for extracting a characterization of the ∇²G filtered image, through the use of an image edge model and a local estimation of a contrast figure in the vicinity of each zero crossing sample. A redrawing algorithm is then used to recover an approximation of the ∇²G filtered image from its zero crossing locations and the extracted characterizations. This system is evaluated using natural scene and synthetic images. Resulting image quality is good, but is shown to vary depending on the nature of the image. The advantages and disadvantages of this technique are discussed. The primary shortcoming of the implemented local estimation technique is an assumption of edge independence. A second approach is developed for characterizing the ∇²G filtered image zero crossings, which eliminates this assumption. This method is based on 2-D filtering, and provides a new technique for the recovery of a ∇²G filtered image from its sampled zero crossings. The method does not involve iteration or the solution of simultaneous equations. Good image reconstruction is shown for natural scene images, with the ∇²G filtered image zero crossings localized only to the original image sample grid. The advantages and disadvantages of this technique are discussed. The application of this recovery from partial information technique is then considered for image compression. A simple coding scheme is developed for representing the zero crossing segments with linear vector segments. A comparative study is then considered, examining the tradeoffs between compression tuning parameters and the resulting recovered image quality. / Applied Science, Faculty of / Electrical and Computer Engineering, Department of / Graduate

Page generated in 0.1133 seconds