• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 587
  • 272
  • 104
  • 103
  • 37
  • 34
  • 22
  • 20
  • 18
  • 18
  • 18
  • 18
  • 18
  • 17
  • 12
  • Tagged with
  • 1447
  • 424
  • 218
  • 191
  • 183
  • 173
  • 144
  • 140
  • 137
  • 134
  • 126
  • 125
  • 112
  • 108
  • 107
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
311

Synoptic conditions necessary for convective extreme precipitation training events

Aylward, Ryan Patrick 09 August 2008 (has links)
Many studies have been done on synopticallyorced systems and heavy rainfall, but little research has gone into forecasting training convective storms. The research in this paper examines 38 separate synopticallyorced convective extreme precipitation training (SCEPT) events to find trends and consistencies in the synoptic environment. Three separate cases were found in which a SCEPT event occurred: Closed Upper-Level Trough (CULL), Upper-Level Trough (ULT), and 850 Trough/Low (850TL). Each event occurred in areas of precipitable water greater than 36.42 mm (1.43 inches), near maximums of 850 hPa moisture convergence and 700 hPa upper-vertical velocities, under the 850 hPa jet, and in the warm sector of a mid-latitude cyclone. CULL and ULT events occurred in strongly forced synoptic environments where 500 and 300 hPa troughs were evident and generally positively tilted. Little upper-level forcing, above 700 hPa, was found in 850TL events.
312

Natural Convection in a Porous Medium Saturated by Nanofluid

Ghodeswar, Kaustubh January 2010 (has links)
No description available.
313

Thermal instability and convection in a horizontal layer of two immiscible fluids with internal energy generation /

Nguyen, Anh-Tri January 1981 (has links)
No description available.
314

An Experimental Study of a Single-Phase Natural Convection in a Cylindrical, Vertical Channel

Hashemi, S. Ali A. 01 January 1986 (has links) (PDF)
Presented in this paper is the first known experimental assessment of a single-phase natural convection in a cylindrical, vertical channel subjected to non-uniform or uniform heat flux. This work was conducted at the University of Central Florida in the College of Engineering. The results of this experimental study were compared with theory. The experimental values of Nusselt numbers (Nu = hD/K) in the entrance and fully-developed regions were somewhat lower and higher, respectively, when compared with theory.
315

Particle Image Velocimetry Applied to Mixed Convection in a Rectangular Enclosure

Barrick, Karen 02 1900 (has links)
An investigation of mixed convection in a rectangular enclosure is presented in which the velocity fields in the enclosure are determined using Particle Image Velocimetry (PIV). Basically, this technique records optical images of flow tracers within a flow field, and determines the velocity field by measuring the displacement of the flow tracers during short time intervals. The components which comprise the PIV system and its operation are described in detail to familiarize the reader with this relatively new technique. The main objective of this investigation is to determine the accuracy and applicability of the PIV technique as a velocity measurement tool. This is accomplished by comparing present experimental velocity results to those obtained by Nurnberg [2] using Laser Doppler Anemometry (LDA). LDA has been proven to be an accurate velocity measurement tool and provides data for evaluating PIV results. A second objective of this research is to use the PIV results to verify a numerical code written by Nurnberg [2] which predicts the velocity fields in the rectangular enclosure. However, the comparison of experimental results of the two measurement techniques revealed that the PIV results were too inaccurate to perform this function. The large amount of error present in this PIV system prompted the recommendation of an improved, more accurate system. Although this improved system is very expensive - approximately $40,000 - it will provide velocity measurements with an accuracy close to that of LDA, at half the cost of an LDA system and with far less time for data acquisition and analysis. / Thesis / Master of Engineering (ME)
316

Modeling of Flow Mode-Transition of Natural Convection in Inclined Cavities

Wang, Hongda 09 1900 (has links)
Steady two-dimensional natural convection in air-filled, regular and irregular inclined enclosures has been investigated numerically. The effect of various configurations of bidirectional temperature gradients on mode transition of thermal convection inside the cavity has been investigated. Numerical treatment of temperature discontinuity at the comer points of the cavity and its effect on the calculated Nusselt number has been discussed. Rayleigh numbers range between 103 and 104, aspect ratio (width/height) =1,2,4, and angle of inclination in the range between 0 and 90°. While the cavity bottom and top walls were kept at constant temperatures at Th (heated) and at Tc (cooled), respectively, thermal conditions of end walls were varied. In addition to the base case of insulated end walls, seven different configurations of thermal conditions of the two side walls have been studied. Results show that numerically predicted heat transfer rates strongly depend on the numerical treatment of temperature discontinuities at cavity comer points. Results also indicate that thermal conditions of cavity end walls have a significant effect on mode-transition of thermal convection flows; and hence, on heat transfer effectiveness inside the cavity, and on the Hysteresis phenomenon occurred as the cavity angle of inclination varied from zero (horizontal position) to 90 ° (vertical position) and back to zero. The effect of curved bottom is carried out by replacing flat bottom of the cavity with a curved one. Only insulated end walls were discussed in curved case. Results indicated that heat transfer rate and mode transition are strongly dependent on the height of curvature of the bottom wall, which offers more flexibility in controlling flow mode-transition, and hence, effectiveness of heat transfer inside the cavity. / Thesis / Master of Applied Science (MASc)
317

An experimental technique to measure convection in liquid metals /

Sismanis, Panagiotis G., 1959- January 1985 (has links)
No description available.
318

The surface energy budget of a summer convective period /

Rabin, R. M. (Robert M.) January 1977 (has links)
No description available.
319

A three dimensional numerical model of atmospheric convection.

Steiner, Joseph Thomas January 1972 (has links)
No description available.
320

Geodynamic Modeling of Mars Constrained by InSight

Murphy, Joshua 05 September 2023 (has links)
Through geodynamic modeling, I investigate how Mars could have produced the extensive volcanism required to form the Tharsis rise early in its history, as well as continue to produce small amounts of melt up to present-day, in order to account for the evidence of limited geologically recent volcanism. InSight is the first interplanetary mission dedicated primarily to the study of a planet's deep interior, and has provided useful constraints for the present structure and interior temperature of Mars. I use the results from InSight and other spacecraft missions to more accurately model Mars, and evaluate the results of my geodynamic models, so as to constrain the properties that are necessary for or consistent with both the InSight results and the volcanic history reflected on the surface. This modeling has required extensive modification to the CitcomS geodynamic code I use, the bulk of that effort being in implementing and testing the melting calculations. One of the useful constraints that would have been provided by InSight would have been ground truthing the heat flow from the interior at the landing site, and this required determining, among other quantities, the thermal conductivity of the regolith into which the heat flow probe (mole) was placed. While the mole could not penetrate to its designed depth, thus disallowing the complete heat flow measurement, the team were able to obtain the necessary data determine the thermal conductivity, and how it varies seasonally. My rapid analytical method of estimating thermal conductivity produces results that agree surprisingly well with those of the team's complex numerical model, despite the mole not meeting the assumption of a sufficiently high length to width ratio. / Doctor of Philosophy / I investigate how Mars could have produced the extensive volcanism required to form the Tharsis rise early in its history, as well as continue to produce small amounts of melt up to present-day, in order to account for the evidence of limited geologically recent volcanism. I use 3D computer models of the mantle--the solid, but slowly flowing layer that makes up the bulk of rocky planets like Earth and Mars. InSight is the first interplanetary mission dedicated to the study of a planet's deep interior, and has provided useful constraints for the present structure and interior temperature of Mars. I use the results from InSight and other spacecraft missions to more accurately model Mars, and evaluate the results of my models, so as to constrain the properties that are necessary for or consistent with both the InSight results and the volcanic history reflected on the surface. This modeling has required extensive modification to the modeling code I use, the bulk of that effort being in implementing and testing the melting calculations. One of the useful constraints that would have been provided by InSight would have been ground truthing the heat flow from the interior at the landing site, and this required determining, among other quantities, the thermal conductivity of the soil into which the heat flow probe (mole) was placed. While the mole could not penetrate to its designed depth, thus disallowing the complete heat flow measurement, the team were able to obtain the necessary data determine the thermal conductivity, and how it varies seasonally. My rapid analytical method of estimating thermal conductivity produces results that agree surprisingly well with those of the team's complex numerical model, despite the mole not meeting the assumption of a sufficiently high length to width ratio.

Page generated in 0.1754 seconds