Spelling suggestions: "subject:"[een] COOLING OF ELECTRONIC EQUIPMENT"" "subject:"[enn] COOLING OF ELECTRONIC EQUIPMENT""
1 |
[en] FORCED CONVECTION OF A CHANNEL PARTIALLY BLOCKED BY A HEAT DISSIPATING ELEMENT / [pt] CONVECÇÃO FORCADA EM UM CANAL PARCIALMENTE OBSTRUÍDO POR UM ELEMENTO GERADOR DE CALOR: UMA INVESTIGAÇÃO NUMÉRICASERGIO LUIZ FREY 15 March 2018 (has links)
[pt] No presente trabalho foi realizada uma investigação numérica de um escoamento forçado em um canal plano parcialmente construído por um elemento retangular aquecido com temperatura da parede constante. O elemento tem dimensões fixas e foi estudado em diferentes posições do canal, ao passo que este tem comprimento fixo e largura variável, de modo a obter-se uma razão de aspecto entre 21,8 e 4,0. A faixa investigada do número de Reynolds foi de 100 a 1500, e o número de Prandtl foi fixado em 0,7, a fim de simular escoamento de ar com propriedades constantes. O método numérico utilizado na resolução das equações de conservação que regem o escoamento foi o método dos volumes de controle desenvolvido por Suhas V. Patankar. A partir dos perfis de velocidade, pressão e temperatura foram calculados a perda de carga ao longo do canal e o número de Nusselt médio em torno do elemento. Foram também realizadas comparações com outros trabalhos; tanto dos resultados hidrodinâmicos como dos térmicos, e boas concordâncias foram obtidas. / [en] A numerical investigation of a forced flow in a partially obstructed plate channel was performed in the present work. The obstruction was an isothermal rectangular element. The effect of the element, which had fixed dimensions, was studied for different channel positions. The channel had a fixed length but its width was variable, making it possible to obtain an aspect ratio between 21,8 and 4.0. The investigation was made for Reynolds number from 100 to 1500 and the Prandtl number was fixed at 0.7, to simulate a constant property air flow. The numerical method used in the solution of the conservation law equations which govern the flow was the control volume numerical method, developed by Suhas V. Patankar. From the velocity, pressure and temperature profiles, the head loss along the channel and the average Nusselt number around the element surface. The hydrodynamical and thermal results were compared, when possible, with previous papers, and a good agreement was obtained.
|
2 |
[en] NATURAL CONVECTION IN AN ADIABATIC VERTICAL CHANNEL IN THE PRESENCE OF A HEAT DISSIPATING ELEMENT / [pt] CONVECÇÃO NATURAL EM UM CANAL VERTICAL ADIABÁTICO NA PRESENÇA DE ELEMENTO DISSIPADOR DE CALORMARCO ANTONIO MONTEIRO SILVA RAMOS 16 March 2018 (has links)
[pt] Um estudo experimental sobre a transferência de calor por convecção natural devido a um elemento isotérmico situado em uma das paredes de um canal vertical de placas planas e paralelas foi
realizado. Os experimentos foram feitos com ar como fluido refrigerante. O elemento isotérmico dissipa calor por efeito Joule. Para a obtenção do coeficiente de transferência de calor e necessária a
avaliação do calor trocado por convenio natural com o ar. Para isto é feita uma quantificação do calor perdido por condução pelas paredes do canal e do calor perdido por radiação pelo elemento isotérmico. O coeficiente de transferência de calor por convecção natural varia com os seguintes parâmetros: a diferença de temperatura entre o elemento isotérmico e o ar ambiente, a posição em que está fixado o elemento isotérmico no canal e a abertura do canal. Um valor ótimo da abertura do canal, que maximiza o coeficiente de transferência de calor, existe para cada diferença de temperatura fixada. Este valor máximo chega a atingir valores 25 por cento maiores que os de placa com o elemento ligado e ela. Comparações entre esses valores máximos e os encontrados para geometrias similares são feitas. Os espaçamentos ótimos encontrados neste trabalho são maiores que os obtidos na literatura para estes outras configurações. Também foram feitas comparações entre os valores para os coeficientes de transferência de calor deste trabalho e os classicamente obtidos em problemas de canais onde uma placa é adiabática e outra é isotérmica. Os coeficientes deste trabalho mostraram-se mais altos. / [en] An experimental study was performed on natural convection heat transfer to air in a vertical channel due to an isothermal heated element attached in one of the walls of the channel. The heated element dissipates heat due to the Joule effect. To determine the heat transfer coefficient, it is necessary to
evaluate the heat transferred to air by natural convection alcne. Hence, the heat lost by the element due to conduction and radiation is evaluated in order to correct the measured heat transfer. The natural-convection heat transfer coefficient is a function of the following parameters: the temperature difference
between the element and the ambient air, the position of the element in the channel, and the channel spacing. An optimal value of the channel spacing, when the heat transfer coefficient attains its maximum value, was observed for each of the temperature difference investigated. These maximum
values may be up to 25 percent higher than the value for the case of infinite spacing. Comparisons are made with results available in the literature for similar configurations, and the values found in this work are higher.
|
3 |
[en] INTERNAL AIRFLOW OVER A MATRIX OF RECTANGULAR BLOCKS: EFFECT OF NONUNIFORMITIES IN HEAT TRANSFER AND PRESSURE DROP / [pt] ESCOAMENTO INTERNO DE AR SOBRE UMA MATRIZ DE MÓDULOS RETANGULARES: EFEITOS DE NÃO-UNIFORMIDADES NA TRANSFERÊNCIA DE CALOR E PERDA DE CARGAWILSON FERNANDO NOGUEIRA DOS SANTOS 03 April 2018 (has links)
[pt] Efeitos na transferência de calor e perda de carga de uma matriz de módulos retangulares, localizada no interior de um duto retangular plano, foram analisados experimentalmente tendo-as ar como fluido de trabalho. A pesquisa foi desenvolvida objetivando simular a refrigeração de componentes eletrônicos por convecção forçada. Aplicando-se a técnica de sublimação de naftaleno determinaram-se os coeficientes de transferência de massa (calor) para três situações investigadas durante o curso da experiência. São elas: (a) para a matriz base formada apenas por módulos regulares, (b) para um módulo alto inserido em todas as posições na linha de centro na matriz, (c) para os módulos vizinhos ao módulo alto na matriz. A partir dos resultados obtidos, determinaram-se correlações para o Número de Sherwood em função do Número de Reynolds compreendido na faixa de 2000 a 7000. O Número de Sherwood do môdulo alto, mostrou-se substancialmente maior comparado com o módulo regular da mesma posição. Esse acréscimo foi da ordem de 90 por cento a 95 por cento na região completamente desenvolvida, para baixo Número de Reynolds. Verificou-se que a presença do módulo alto causou um significativo aumento no coeficiente de transferência de calor nos modulos vizinhos, atingindo em alguns casos, aumento de 50 por cento. O módulo posicionado ao lado do módulo alto acusou o maior acréscimo de transferência de calor. Medidas de pressão na matriz sem e com módulo alto foram realizadas. Com a introdução do módulo alto, um acréscimo na perda de carga for verificado, sendo que, para o menor Número de Reynolds, este incremento corresponde a perda de carga equivalente a aproximadamente seis fileiras de módulos regulares. / [en] Heat transfer and pressure drop characteristics an array of rectangular modules inside a rectangular duct were experimentally studied using air as the working fluid. The research was conducted with the aim of simulating the cooling of eletronic components by forced convection. Mass ( Heat ) transfer coefficients were determined via naphthalene sublimation technique for three different situations, namely (a) for modules in the basic array, composed of regular modules only, (b) for a tall module positioned at all positions in the array center longitudinal row, and (c) for the modules in the neighborhood of the tall module. With basis on the results obtained, relations for the Sherwood (Nusselt) Number were obtained as a function of the Reynolds Number, which varied from 2000 to 7000. The Sherwood Number for the tall module was found to be higher than the one for the regular module at the same position. This increase was of the order of 90-95 percent, in the fully developed region and for low Reynolds Number. It was found that the presence tall module caused of the significant enhancements on the heat (mass) transfer coefficient of the neighboring modules, reaching in same cases 50 percent increases. The regular modules situated by the sides of the tall module underwent the highest enhancements on heat transfer. Pressure Measurements on the array with and without the tnll module where performed. In the presence of the tall module, an additional pressure loss was observed, being equivalent to the loss associated with approximately six transversal rows of regular modules, for the lower Reynolds Number.
|
Page generated in 0.0651 seconds